AD-A159 542 THE DESIGN AND lHPLEHElTﬂTlDN OF A HIERARCHICAL 173
INTERFACE_FOR THE MULTI-LINGUAL DHTRBHSE SYSTEMCU)
NAVAL POSTGRRDUBTE SCHOOL MONTEREY C|

UNCLHSSIFIED T P BENSON ET AL. F/G 9/2 NL

"FFFEEEE

TR
ll= Il

| Ey iy

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS - 1963 -

NAVAL POSTGRADUATE SGHOOL

Monterey, Galifornia

N
<
H
N
Ty
F
o
< DTIC
(> ELECTE
L R)
- SEP2 41985
THE DESIGN AND IMPLEMENTATION OF A
HIERARCHICAL INTERFACE FOR THE
MULTI-LINGUAL DATABASE SYSTEM
o { by
a
(- Timothy P. Benson
(b and S
'::" Gary L. Went:z .
— June 1985 =
— Thesis Advisor: D. K. Hsiao -Z‘:i:;
€= Approved for public release; distribution is unlimited o

!f-'-"'ﬁ' R D T T—— o PR A At B (- Ak St A e it e S
L e . . PR . .

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

T. REPORT NUMBER 2. GOVT ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER

Lm,/)/f9§‘7ﬂ-

4. TITLE (end Subtitle) S. TYPE OF REPORT & PERIOD COVERED

The Design and Implementation of a Master's Thesis
Hierarchical Interface for the June 1985

Multi'Llngual Database S}'Stem 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(a) 8. CONTRACT OR GRANT NUMBER(s)
Timothy P. Benson
and Gary L. Went:z

9. PERFORMING ORGANIZATION NAME AND ADORESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS
Naval Postgraduate School
Monterey, CA 93943-5100
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Naval Postgraduate School June 1985
Monterey, CA 93943-5100 3. WPMER OF PAGES

14. MONITORING AGENCY NAME & ADORESS(if dilferent from Controlling Office) 18. SECURITY CLASS. (of thie report)

UNCLASSIFIED

1Sa. DECLASSIFICATION, DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution is unlimited

17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, !f di{ferent from Report)

'8. SUPPLEMENTARY NOTES

19 KEY WORDS (Continue on reverse elde {/ necessary and Identify by block number)

Multi-lingual Database System (MLDS), Multi-backend Database
System (MBDS), Hierarchical Data Model, Data Language I (DL/I)
Attribute=ba.ed Data Language (ABDL), Language Interface,
Information Management System (IMS)

20. ABSTRACT /Continue on reverse side If necessary and Identity by block number)

Traditionally, the design and implementation of a conventional
database system begins with the choice of a data model followed
by the specification of a model-based data language. Thus, the
database system is restricted to a single data model and a
recific data language. An alternative to this traditional
approach to database-system development is the multi-lingual
database system (MLDS). This alternative approach enables the

e e e
,‘,‘.'..'.'. VT

ok

[
e

et s

Lt

anta’s e 4 2

(Cantinued)

DD . 3e%: 1473 coimion oF 1 NOV €3 15 cBsOLETE
S N 0102- LF- 014- 6601

1 SECURITY CLASSIFICATION OF THIS PAGE (When Data Bntered)

o T e e U T AR R N
._._-_-,q\._.\.. .. « T a
WE ST ISP T I B N

PRI "t P PEN

e

A
NN

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

ABSTRACT'(Continued)

user to access and manage a large collection of-databases, via
several data models and their corresponding data languages,
without the aforementioned restriction.

In this thesis, we present the specification and implementation
of a hierarchical/DL/I language interface for the MLDS.
Specifically, we present the specification and implementation of
an interface which translates DL/I language calls into attribute-
based data language (ABDL) requests. We describe the software
engineering aspects of our implementation and an overview of the
four modules which comprise our hierarchical/DL/I language inter-
face.

e
v e S e e

-
T e o
]

LY.
D
« a

.

Qi

PrPPE——
RN
. e .

S N 0102- LF-014-6601

2 SECURITY CLASSIFICATION OF THIS PAGE(When Data EBntered)

. R U L e e e e S - L Lot S T LR T SR
- et Tt e Tt et e -t - PRSI U R I P PR

S - DA . . N [AT P
o™ - - - " - avar N . et .o - . R R AN LA AL I
NN P N S L P P RS . . e R R R RN SRS N AN
(o SR PN R WA AP SR WL R SRE SR P i N P B P N S IS P LS - BICINT S Graary aal ol a2 aSh o alal o -

i e s e v i e iee, 2 e A e e e e et e B SR e Pun i B bt A S e e s 3 LM i el S e i A il Bl g Sl il neh Sul Red And e

Approved for Public Release, Distribution Unlimited.

The Design and Implementation of a
Hierarchical Interface for the
Multi-Lingual Database System

by

Timothy P. Benson
Captain, United States Marine Corps
B.S.,; United States Naval Academy, 1978

ACCPF”
and fon For

BTIS oRs 57
Gary L. Wentz DI1C T/2

Captain, United States Marine Corps u”w?/?- 2 .
B.S., University of Kansas, 1978 Justifee wiopn !

R }

Submitted in partial fulfillment of the | By

e e——

requirements for the degree of _Distribut: UQ
) Availue LlLtV ol qrahs““
MASTER OQF SCIENCE IN COMPUTER SCIENCE = ToMTAYS
Avall ardfor
from the Dist Special
NAVAL POSTGRADUATE SCHOOL
June 1985 / ’

. .
NS
LN

Authors: »'w«;ﬁd /o 1 arnd ey ; /'D'\:"\ :’

Bensan) Vv my g
3 . :crq ‘.~_".

Wentz

Approved by: /W/A,* ?(/r 71//.7‘ Yﬁ/

e e e e . e e e e e e e e e e e e W

|
|
!
|
l
!
|
|
|
|
}
|
|
!
|
|
I
P ¢
i b Ak

gt
]
J
~)
I
0
e
Lo
N 0
_‘
3
L
0w
S
1]
D
a
<
-
\n
v}
|

o

B. J. MaclLennan,

Chairman,

Y

Department of Computer Science

Rk ek ata

. .. .
AP PR T J

!

. Pl NS LA R Ao i Mt CRNar 2 S S "Bl Nadh S el Yidh B aal S0 Sl arn s o
. C S e L T, PR At e S e P - . <

ABSTRACT
.~ Traditionally, the design and implementation of a
conventional database system begins with the selection of a
data model, followed by the specification of a model-based
data 1language. An alternative to this traditional approach

to database system development is the multi-lingual database

system (MLDS). This alternative approach affords the user
'i the ability to access and manage a 1large collection of
databases via several data models and their corresponding

_: data languages. -
b - Y /
B +—3m this thesis we present ,the specification and

ri implementation of a hierarchical/DL/I language interface for

|
[S

the MLDS. Specifically, we presentiAthe specification and

implementation of an interface which translates DL/I daté

languaqge calls into attribute-based data 1language ABDL)
'-_] ‘r;,:‘rw('

requests. /“E describeg&he software engineering aspects of

x>

our implementation and an overview of the four modules which

the —_— /
comprise eur DL/I language interface. ;25{7&4,L,L <?79ﬂhJ4
- , 1, Y
/ oy '}ng';';j S,)

S A0 Suk ZR0 e Aun o
AR .
PRV

vy
1

T
[T

YE——

AR .

PRERE .
s 0 M N ',

N T T T T ey~ o e oo ..71_.

TABLE OF CONTENTS

I. INTRODUCTION .ccccancccccacranaancans tecssncen 10
A. MOTIVATION ...cccccncccenncnnncen csvesasan 10
B. THE MULTI-LINGUAL DATABASE SYSTEM 13

C. THE KERNEL DATA MODEL AND LANGUAGE 15
D. THE MULfI—BACKEND DATABASE SYSTEM i6
E. THESIS OVERVIEW ...ccc0nceccanee ceconusa 18

II. SOFTWARE ENGINEERING

OF A LANGUAGE INTERFACE sessssecnussans 20
A. DESIGN GOALS cccccecvevsosnanccncnana csaan 20
B. AN APPROACH TO THE DESIGNccecacas 21

1. The Implementation Strategy 21
2. Techniques |
for Software Development- 22

3. Characteristics

of the Interface Software 24

C. A CRITIGUE OF THE DESIGNcceceaunea 26
D. THE DATA STRUCTURES seseceesesanane 28
i. Data Shared by All Users ...ccevesss 28

2. Data Specific to Each User 32

E. THE ORGANIZATION

= OF THE NEXT FOUR CHAPTERS ..ccvuecevaesns 35
!
E; III. THE LANGUAGE INTERFACE LAYER (LIL) evevvevn- 36
[- A. THE LIL DATA STRUCTURES .« vvceceoccrens 7
B. FUNCTIONS AND PROCEDURES . vvveeceecenns 39
5

Py —— g LA s anan g
'.)

DO T TR A S I A A ARSI e S W M e R |
)

:

- 1. INitialization .ceeeeeeeeessceennnes 39
- 2. Creating the Transaction List 40
I 3. Accessing the Transaction List 41 :
% a. Sending DBDs to the KMS 42
- b. Sending DL/I Requests

! £0 the KMS .cveveeencennnnannans 42
2 4. Calling the KC .veecvvsarsnccnnneass 43
-.*l 9. Wrappiné-up................. 44
! IV. THE KERNEL MAPPING SYSTEM (KMS) .oeeeun... .. 45
| A. AN OVERVIEW OF THE MAPPING PROCESS 45
‘_ i. The KMS Parser / Translator 45
?‘ 2. The KMS Data Structuresc.-.- .o 47
EE B. FACILITIES PROVIDED
i BY THE IMPLEMENTATION - -
. 1. Database Definitionsceavsesnn 52
2. Database Manipulations T
= a. The DL/I GET Calls
. to the ABDL RETRIRVE eveveuaesee 55
;' b. The DL/I GET HOLD Calls
% to the ABDL RETRIEVE ..oceveen.. 61
’ c. The DL/I DLET

to the ABDL DELETE .eveveee.. ee. &2

. d. The DL/I REPL
E. to the ABDL UPDATE Ceeeaan 64
- e. The DL/I ISRT
:? to the ABDL INSERT .veeeveeenens 66

- e
[

T T T T TR TR AT T ' ol EACEAN L N A A Bl Sl e Vg i S i S A SC A MG/ ERe i S S S S

f. The Mapping Processes:
An Example~ 68
g. Segment Search Argument
Command Codescsuusecncsss 74
(1) Path Retrieval
(Command Code D)cccuen 75
(2) Path Insertion
(Command Code D)s0... 76
(3) Command Code F ...ccceaesas 78
(4) Command Code V ...ccccannen 79
3. Semantic ANAlySiS .ccacecsvcrcnnccess 80
C. FACILITIES NOT PROVIDED
BY THE IMPLEMENTATIONcccccecacnanans 81
1. Interfacing the Userccsceeuea 81
2. Segment Insertion
Based on Current Positionc.... 82
3. Additional SSA Command Codes 83
V. THE KERNEL CONTROLLER ...cccecccncacanancnsns 84
A. THE KC DATA STRUCTUREScccccvsecann 87
B. FUNCTIONS AND PROCEDURESc.cevaeenas 95
1. The Kernel Controllerccensaa.n 95
2. Creating a New Database ...ccesaue... 6
3. The GU, GN, GNP,
ISRT and REPL Requests ...c.ccccsccans 6

4. The GHU, GHN

and GHNF Requests ...cccccnescanansce 103

R T R T T TN TR TR TR TE.Y TR T REITYTRE TR TR TR T TR TR LT R TR Ty O e e e e B e - W T Y™ M T e T T T T TR T T YT oY
. e . e . A L R . - . N . B S . A . R A

S. The DLET and SPECRET Requests 103
VI. THE KERNEL FORMATTING SYSTEM (KFS) 186

A. THE KFS DATA STRUCTUREcsaccseceeses 106

B. THE FILING OF DL/I RESULTS ..caccuccennn 127
C. THE KFS PROCESScccacccecccacccca ... 108
VII. CONCLUSION ...cc.cucceannacans eeaceenssasnna 1@9

APPENDIX A - SCHEMATIC OF THE
MLDS DATA STRUCTURES ...ccueueeceaanna 113
APPENDIX B - THE LIL PROGRAM SPECIFICATIONS 131
AFPPENDIX C - THE KMS PROGRAM SPECIFICATIONS 138
APPENDIX D - THE KC PROGRAM SPECIFICATIONS 169
AFFENDIX E - THE KFS PROGRAM SPECIFICATIONS 194
APPENDIX F — THE DL/I USERS® MANUAL cese 195
A. OVERVIEW aneccens cemsesescsccannnna 195
B. USING THE SYSTEM caesesenumsanacen 195

1. Processing
Database Descriptions (DBDs) 197
2. Processing DL/I Requestscaunees 198
C. DATA FORMAT ..c.vceccoananscensnncnsnonasn 200
D. RESULTS fecsoecanocccconunn cmeees 201
LIST OF REFERENCES creesean creeanrae Ameseas 202
INITIAL DISTRIBUTION LIST caseecens Careans 204
8

B A AN ot gt et iy 1 S AL I A SN T N

- Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 135.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.

Figure 23.

Figure 24.

Adimoe et Jaass J

LIST OF FIGURES

N

The Multi-Lingual Database System

The Multi-Backend Database System

The Education Database

The dbid_node Data Structure

The hie_dbid_node Data Structure .

The hrec_node Data Structure

The hattr_ﬁode Data Structure

The user_info Data Structure

The 1li_info Data Structure

The dli_info Data Structure

The tran_info Data Structure

The hie_req_info Data Structure ..

The hie_kms_info Data Structure ..

Additional KMS Data Structures

The Sit_info Data Structure

The Hierarchical Database Schema .

The KMS dml_statement Grammar

The dli_info Data Structure

The Sit_status_info Data Structure

The Sit_info Data Structure

The hie_file_info Data Structure

The kfs_hie_info Data Structure

The Hierarchical Database Schema

Data Structures

The User Data Structures

D T

. . . T el et T e s et s
MY ‘}4'4 R B SN L SAPEY B 1 A

L R T
2ot oannlas

PR I D W YR

14

17

19

2] 2 €
o (7 N -

o

2
~

38

48

49

00

55

70

88

88

20

94

107

115

A S A et St A Bttt aate it |

WU TN T ey W Rt n ol arbals ARE o G- avil lT e e o ——— Palints Jhe e St Sese et M I et Jhaincibuderiadh S acSh de-Std
. N - Sl Yatican S afc e ARea it e dhaediuan bt Jha e Sage st Sa aor . e

I. INTRODUCTION

A. MOTIVATION

During the past twenty years database systems have

been designed and implemented using what we refer to as the
traditional approach. The.first step in the traditional
approach involves choosing a data model. Candidate data
models include the hierarchical data model, the relational
data model, the network data model, the entity—-relationship
data model, or the attribute—-based data model to name a few.
The second step specifies a model-based data language, e.g.,
DL/1 for the hierarchical data model, or Daplex for the
entity-relationship data model.

A number of database systems have been &eveloped using
this methodology. For example, IBM has introduced the
Information Management System (IMS) in the sixties, which
supports the hierarchical data model and the hierarchical-
model -based data language, Data Language I (DL/1). Sperry
Univac has introduced the DMS-1108 in the early seventies,
which supports the network data model and the network-
model -based data language, CODASYL Data Manipulation
Language (CODASYL-DML). And more recently, there has been
IBM's introduction of the SQL/Data System which supports the

relational model and the relational ~model -based data

10

B R N W W T a——rrerrew

language, Structured English Query Language (SRL). The
result of this traditional approach to database system
development 1s a homogeneous database system that restricts
the user to a single data model and a specific model-—-based
data language.

An unconventional approach to database system

development, referred to as the Multi-lingual Database

System (MLDS) fRef. 113, 'alleviates the aforementioned
regtriction. This new system affords the user the ability
to access and manage a large collection of databases via
several data models and their corresponding data languages.
The design goals of the MLDS involve developing a system
that 1is accessible via a bhierarchical/DL/I intertace, a
relational/SGEL interface, a network/CODASYL interface, and
an entity-relationship/Daplex interface.

There are a number of advantages in developing such a
system. Perhaps the most practical of these involves the
reusability of database transactions developed on an

existing database system. In the MLDS, there is no need for

the user to convert a transaction from one data language to

another. The MLDS permits the running of database
transactions written in different data languages.
Therefore, the user does not have to perform either manual

or automated translation of existing transactions in order

to execute a transaction in the MLDS. The MLDS provides the

11

N ..‘. PUNT Y

IR it CERPC IR T -’ @ e et T L Lt et e et t et . L T
PV WO YU S SPRY WHT AL SRR WAE SN Wl Y Wg S AR R W W W P U TR UL WD VRSP T W W W)

possesses this characteristic and does not have any hidden

side—effects that could pose problems months or years from

now. As a matter of fact, we have intentionally minimized
the interaction between procedures to alleviate this
problem.

The interface also has to be maintainable. This 1is
important 1in 1light of the fact that almost 704 of all
saoftware life-cycle costs are incurred after the software
becomes operational, i.e., in the maintenance phase. There
are software engineering techniques we employed that have
given the DL/I interface this characteristic. For example,
we require programmers to updafe documentation of the
interface code when changes are made. Hence, maintenance
programmers have current documentation at all times. The
problem of trying to identify the functionality of a program
with dated documentation is alleviated. We also require the
programmers to update their SSL specification as the code is

being changed. Thus, the SSL specification consistently

corresponds to the actual code. In addition, the data
structures are designed to be general. Thus, 1t is an easy
task to modify or rectify these structures to meet the

demands of an evolving system.

The research conducted by Demurjian and Hsi ao
[Ref. 11 provides a high-level specification of the MLDS.
The thesis written by Weishar [Ref. 3] extends the above

work and provides a more detailed specification of a DL/I

M
w

L st R R . P

PP W L PP VA DS W (UK W W e D 3

et et et et

We have avoided this option, and instead, used conditional

compilation and diagnostic print statements to aid in the
debugging process. To validate our system we have used a
traditional testing technigque; path testing [Ref. 14]. We
have checked boundary cases, such as the single and multiple
DL/1 ISRT operations. And we have tested those cases
considered "normal". It is noteworthy to mention that
testing, as we bave done it, does not prove the system
correct, but may only indicate the absence of problems with
the cases that have been tested.

-

3. Characteristics of the Interface Software

In order for the DL/I interface to be successful, we
have realized that it has to be well designed and well
structured. Hence, we are cognizant of certain
characteristics that the interface has to possess.
Specifically, it has to be simple. In other words, it bhas
to be easy to read and comprehend. The € code we have
written has this characteristic. For 1instance, we oaften
write the code with extra lines to avoid shorthand notations
available in C. These extra lines have made the difference
between comprehensible code and cryptic notations.

The interface software also has to be
understandable. This has to be true to the extent that a
maintenance programmer, for example, may easily grasp the
functionality of the interface and the relation between it,

and the other portions of the system. Qur sof tware

T S e R S S Sl .-
' e VAt atat ctataalealata?aletatalatat on’' o saa atial o W e L Ll M LI, T

Lo

the DL/I interface. Hence, the requirements specification

is derived from the above research.

We have developed the design of the system using the
above specification. A Systems Specification Language (SSL)
[Ref. 12] is used extensively during this phase. The SSL
has permitted us to approach the design from a very high-
level, abstract perspective by:

{1) enhancing communications among the program team
members,
(2) reducing dependence on any one individual, and,
(3) producing complete and accurate documentation of
the design.
Furthermore, the S8SL has allowed us to make an easy
transition from the design phase to the coding phase.

We have used the C programming language [Ref. 13] to
translate the design into executable code. Initially, we
were not conversant in the 1 anguage. However , our
background in Pascal and the simple syntax of C, have made
it easy for us to learn. The biggest advantage of using C
is in the programming environment that it resides (i.e., the
UNIX operating system). This environment has permitted us
to partition the DL/I interface, and then manage these parts
in an effective and efficient manner. Perhaps, the only
disadvantage with wusing C 1is the poor error diagnostics,
having made debugging difficult. There is an on-line

debugger available for use with C, in UNIX, for debugging.

(3]
o

Al mLe L

is then decomposed into its four modules (i.e., LIL, KMS,
KC, and KFS) . These modules, in turn, are further
decomposed into the necessary functions and procedures to
accomplish the appropriate tasks.

2. Technigues for Software Development

In order to achieve our design goals, it is
important to empl oy effective software engineering
techniques during all phasés of the software development
li¥e—cycle. These phases, as defined by Ledthrum
{Ref. 11: p. 271, are as follows:

(1) Requirements Specification - This phase involves

stating the purpose of the software: "what" is to
be done, not "how" it is to be done.

(2) Design — During this phase an algorithm is devised
to carry out the specification produced 1in the
previous phase. That is, “"how" to implement the

system is specified during this phase.

(3) Coding - In this phase, the design is translated
into a programming language.

(4) Validation - During this phase, it is ensured that
the developed system functions as originally
intended. That is, it is verified that the system

actually does what it is supposed to do.

The first phase of the life-cycle has already been
performed. The research done by Demurjian and Hsiao
(Ref. 11 has described the motivation, goals, and structure

of the MLDS. The research conducted by Weishar [Ref. 31

has extended this work to describe in detail the purpose of

22

aralane e el

T o s i resrrrprrrr oy mm———— v ——— 4T~—“G‘I-¢o\<_,‘w:l‘l“1‘_i7-_-'"v:"’TT—v‘v—T

In addition, we intend to make our interface transparent
to the user. For example, an employee in a corporate
environment with previous experience with DL/I could laog
into our system, issue a DL/I request and receive resultant
data in a hierarchical format, i.e., a segment. The
employee requires no training in ABDL or MBDS procedures

prior to utilizing the system.

B.. AN APPROACH TO THE DESIGN
1. The Implementation Strategy

There are a number of different strategies we might
have employed in the implementation of the DL/I 1language
interface. For example, there are the build-it-twice full-
prototype approach, the level-by-level top—-down approach,
the incremental development approach, and the advancemanship
approach (Ref. 1@: pp. 41-461. We have predicated our
choice on minimizing the "software-r~risis" as described by
Boehm [Ref. 1@: pp. 14-311].

The strategy we have decided upon is the level-by-
level tou—-down approach. QOur choice is based on, first, a
time corstraint., The interface has to be developed within a
specified time, specifically, by the time we graduate. And
second, this approach lends itself to the natural evolution
of the interface. The system is initially thought of as a
"black box" (see Figure 1) that accepts DL/I transactions

and then returns the appropriate results. The "black box"

21

WA I T RETT YT NTW

TR g e o Lol oot Sinvih i Aoty Wil Shadh Bt St AR Rt Sl Sl Jhr S it i et dnas S 2 B bl 2 Wb aURl o ug

I1. SOFTWARE ENGINEERING OF A LANGUAGE INTERFACE

In this chapter, we discuss the various sof tware
engineering aspects of developing a langquage interface.
First, we describe our design goals. Second, we outline the
design approach that we have taken to implement the
interface. Included in this section are discussions of our
imblementation strategy, our software development
techniques, and salient characteristics of the language
interface software. Then, we provide a critique of our
implementation. Fourth, we describe the data structures
used in the interface. And finally, we provide an

organizational description of the next four chapters.

A. DESIGN GOALS

We are motivated to implement a DL/I interface for a
MLDS using MBDS as the kernel database system, the
attribute-based data model as the kernel data model, and
ABDL as the kernel data language. It is important to note
that we do not propose changes to the kernel database system
or language. Instead, our implementation resides entirely
in the host computer. All user transactions in DL/I are
processed in the DL/I interface. MBDS continues to receive

and process requests in the syntax and semantics of ARDL.

20

p——Y “'V" g
. v - SO)
PP . RECRPUEE R,

L St et i A At R i At el Ml S-S A Sndh - g e I T e B i o AR At i atvh i aalRatul S ast el A il el i e

Appendix A covers the data structure diagrams for the

shared and local data. The
interface modules (i.e., LIL,
Appendices B, C, D, and E,
users’ manual for the system.

source data language, DL/I,

detailed specifications of the
KMS, K€, and KFS) are given in
respectively. Appendix F is a

The specifications of the

and the target data language,

ABDL, 1is found in [Ref. 17: pp. 282-307] and [Ref. 71,

respectively.

-

Throughout this thesis, we provide examples of DL/I

requests and their translated ABDL equivalents. All

examples involving database operations presented in this

thesis are based on the education database described in Date

[(Ref. 17: pp. 279-2841, and shown in Figure 3.

COURSE
{ CNum | CTitle | Descripn !
: PREREQR OFFERING :
+ + + + + ————————— +
i PNum |} PTitle ! + Date | Location | Format |
+ +— + +— + + —_—
+———— ——— +
{ TEACHER STUDENT '
t—————— —————— + + —— - —_
i TNum ! TName ! { SNum | SName | Grade |
+- + -+ ————— +— —— +

n
[

Q
=
3

n

L

The Education Database.

bus. Users access the system through either the hosts or
the controller directly (see Figure 2).

Performance gains are realized by increasing the number
of backends. If the size of the database and the size of
the responses to the transactions remain constant, then MBDS
produces a reciprocal decrease in the response times for the
user transactions when the number of backends is increased.
On the other hand, if tﬁe number of backends is increased
préportionally with the increase in databases and responses,
then MBDS produces invariant response times for the same

transactions. A more detailed discussion of MBDS is found

in [Ref. 81.

E. THESIS OVERVIEW

The corganization of our thesis is as follows: In
Chapter 11, we discuss the software engineering aspects of
our implementation. This 1includes a discussion of our
design approach, as well as a review of the global data
structures used for the implementation. In Chapter III, we
outline the functionality of the language interface layer.
In Chapter IV, we articulate the processes constituting the
kernel mapping system. In Chapter V,; we provide an overview
of the kernel controller. In Chapter VI, we describe the
kernel formatting system. In Chapter VII, we conclude the

thesis.

18

et et . - . " e . - . « "N e - - - . . e . " - .« . - . . . - - ‘.
P S AP R S P S SR, - e . - . B et T e Lot PR T SRR
A SISV AL S A T AR S R SRR L O O - PR LAR VAT S Wl SR S Uiy U AP el ST S AP U WL W

\

,v'rvv. A anangry A

) L am o cw
..n““."..'

T Lol A b Srubel St S el Sauie —r

| Backend Store 1
|

Backend

Processor 1

Backend
Processor 2

Backend
Controller

Backend
Processor M

Communications
Bus
Figure 2. The Multi-Backend Database System.

fashion. These backends have identical hardware, replicated
software, and their own disk systems. In a multiple
backend-configuration, there is a backend controller, which
is responsible for supervising the execution of database
transactions and for interfacing with the hosts and users.
The backends perform the database operations with the
database stored on the disk system of the backends. The

controller and backends are connected by a communication

17

.........

- S S NG G P T A P

e e . . I S R T SR Pl
LERNCIREE et et K . . ~ . O T S T T VR S N
. I . e P P R P PRI
. ‘ . .« . . e DRI I I J
s PR PO Y N PSS IECEPGOL-¢ S P O e

data-model transformations and data-langquage translations
for the language interfaces.

The attribute-based data model proposed by Hsiao
[(Ref. 41, extended by Wong [Ref. 51, and studied by Rothnie
[Ref. 61, along with the attribute-based data 1language
(ABDL), defined by Baner jee [Ref. 71, havé been shown to be
acceptable candidates for the kernel data model and kernel
data language, respectively.

Why is the determination of a kernel data model and
kernel data language so important for a MLDS? No matter how
multi-lingual the MLDS may be, if the underlying database
system (i.e., KDS) is slow and inefficient, then the
interfaces may be rendered useless and untimely. Hence, it
is important that the kernel data model and kernel language
be supported by a high—-performance and great-capacity
database system. Currently, only the attribute-based data
model and the attribute-based data language are supported by
such a system. This system is the multi-backend database

system (MBDS) [Ref. 11].

D. THE MULTI-BACKEND DATABASE SYSTEM

The multi-backend database system (MBDS) has been
. designed to overcome the performance problems and upgrade
?[issues related to the traditional approach of database
= system design. This goal is realized through the

utilization of multiple backends connected in a parallel

16

. -'.~-_.\ --!' .
\.q..xs A L‘x{-g. d.‘.t. U\.JL e {

__.'.

modules are required for each other language interface of
the MLDS. For example, there are four sets of these modules
where one set is for the hierarchical/DL/1 1language
interface, one for the relational/S@L language interface,
one for the network/CODASYL language interface, and one for

the entity-relationship/Daplex language interface. However,

if the user writes the transaction in the native mode (i.e.,

in KDL), there is no need %or an interface.

) In our implementation of the hierarchical/DL/I 1anguage
interface, we develop the code for the four modules.
However, we do not integrate these modules with the KDS as
shown 1in Figqure 1. The Laboratory of Database Systems
Research at the Naval Postgraduate School is in the process
of procuring new computer equipment for the KDS. When the
equipment is installed, the KDS is to be ported over to the
new equipment. The MLDS software is then to be integrated

with the KDS. Although not a very difficult undertaking, it

may be time—consuming.

C. THE KERNEL DATA MODEL AND LANGUAGE

The choice of a kernel data model and a kernel data
language 1is the key decision in the development of a multi-
lingual database system. The overriding question, when
making such a choice, is whether the kernel data model and

kernel data language is capable of supporting the required

15

T o e :-..\. \.. LT '._ h...‘v.'....A::“__..:.- IRCRI

......

KMS

\.g

LIL KC KDS

> \ . ..
@ KFS

UDM : User Data Model
UDL : User Data Language

LIL : Language Interface Layer
KMS : Kernel Mapping System
KC : Kernel Controller

KFS : Kernel Formatting System

KDM : Kernel Data Model

KDL : Kernel Data Language

KDS : Kernel Database System

Figure 1. The Multi-Lingual Database System.
sends the KDL transactions to the KC. When the KC receives
the KDL transactions, it forwards them to the KDS for
execution. Upon completion, the KDS sends the results in
KDM form back to the KC. The KC routes the results to the
kernel formatting system (KES). The KFS reformats the
results from KDM form to UDM form. The KFS then displays
the results in the correct UDM form via the LIL.
The four modules, LIL, KMS, KC, and KFS, are

collectively known as the language interface. Four similar

14

B. THE MULTI-LINGUAL DATABASE SYSTEM

A detailed disc =sion of each of the components of the
MLDS is provided in subsequent chapters. In this section we
provide an overview of the organization of the MLDS. This
assists the reader in understanding how the different
components of the MLDS are related.

Figure 1 shows the system structure of a multi-lingual
database system. The user‘interacts with the system through

model (UDM) to issue transactions written in a corresponding
model ~based user data language (UDL). The LIL routes the
user transactions to the kernel mapping system (KMS). The
KMS performs one of two possible tasks. First, the KkKMS
transforms a UDM-based database definition to a database
definition of the kernel data model (KDM), when the user
specifies that a new database is to be created. When the
user specifies that a UDL transaction is to be executed, the
KMS translates the UDL transaction to a transaction in the
kernel data language (KDL). 1In the first task, the KMS
forwards the KDM data definition to the kernel controller
(KEC). The KC, in turn; sends the KDM database definition to
the kernel database system (kKDS). When the KDS is finished
with processing the KDM database definition, it informs the
KC. The KC then notifies the user, via the LIL, that the

database definition has been processed and that loading of

the database records may begin. In the second task, the KMS

13

R O S T R O Ry ——— AN A S i A Shuas dhode Sheet St i S Jhesy g
NUaBR St S o e S A S M S B S LT T G TR TR L A A il Pl

same results even if the data lanquage of the transaction
originates at a different database system.

A second advantage deals with the economy and
effectiveness of hardware upgrade. Frequently, the hardware
supporting the database system is upgraded because of
technological advancements or system demand. With the
traditional approach, this type of hardware upgrade has to
be provided for all of‘the different database systems in
usé, so that all of the users may experience system
performance improvements. This is not the case in the MLDS,
where only the upgrade of a single system is necessary. In
the MLDS, the benefits of a hardware upgrade are uniformly
distributed across all users, despite their use of different
models and data languages.

Thirdly, a multi-lingual database system allows users to
explore the desirable features of the different data models
and then use these to better support their applications.
= This 1s possible because the MLDS supports a variety of
databases structured in any of the well-known data models.

It is apparent that there exists ample motivation to
develop & multi-lingual database system with many data
model /data language interfaces. In this thesis, we are

developing a hierarchical/DL/I language interface for the

g

MLDS. We are extending the work of Banerjee [Ref. 21 and
Weishar [Ref. 31, who have shown the feasibility of this

particular interface in a MLDS.

12

R T A P AT S N P P
Sl S Y S N R I T R T T T S L SR S IPL S P S e
PRAPILIPOPE, WL PP WK (R TPIC R AE w WAL R P A o WA W S T R 2t SRR R i Wl A L S i o D

Ll N PO O RN AL I G A A A ARSI RGNS T M S e AR At R M A |

language interface. This thesis outlines the actual
implementation of a DL/I interface. The appendices provide

the SSL design for this implementation.

A final characteristic that a DL/I interface should
have 1is extensibility. A software product has to be
designed in a manner that permits the easy modification and
addition of code. In this light, we have placed "“stubs" in
appropriate locations within the KFS to permit easy
insertion of the code needed to handle multiple horizontal
screens of output. In addition, we have designed our data
structures in such a manner that subsequent programmers: may
easily extend them, to haﬁdle not only multiple users, but

also other language interfaces.

C. A CRITIRQUE OF THE DESIGN

Our implementation of the DL/I interface possesses all
of the elements of a successful software product. As noted
previously, it is simple, understandable, maintainable, and
extensible. Our constant employment of modern software
engineering techniques have ensufed its success.

However , there are two techniques that are especially
worthy of critique. The first of these is the use of the
SSL. Initially, we have felt that the implementation
language may also serve as the language to specify program
algorithms. However,; in doing sa, we have stifled our

creativity. This 1s because we are concentrating not only

26

. . - - A . M P < . P o P - - . P e . - s : o PR P ot o o . 2 ... “a-,
el A e e e e T T N e e N L N e e T oY
. R . B - o et e .

Nl et et e T T e et e e T e T T Tt T T T e et P e T T

e
LR

. . CTe .

R TiV I Y P T 0 GO PR P S

-~

.I - —‘IA .

WY AW T IV I aw
. 8 RSN

Elul R R Eadi= i A S "had Sndiiiadh-iiadl Shall Bha il S it TS Siad Mhadl Sl Sl Renfthe A N A Yl S 2 P i B

on what the algorighm does, but also on what the constructs
(data structures) of the algorithm are. The use of the SSL
has permitted us to concentrate on the functionality of the
algorithm without a heavy concentration on its particular
constructs. This has allowed us to view the algorithm in a
detached manner so that the most efficient implementation
for the constructs may be used. Although we have initially
felt that the development of the program with the SSL may be
too time-consuming, our opinions have changed when we have
realized the advantages of the SSL and the overall
complexity of the DL/I language interface.

The way in which the data structures are designed is the
other noteworthy software engineering techniqgue. Reing
relatively inexperienced programmers, we are inclined to use
static structures. Hence, we have made extensive use of
structures which are bound at compile time. We soon realize
that in doing so, the computing resources of the system
(i.e., the data space) are being depleted quite rapidly.
Therefore, 1t 1is necessary for us to design the data
structures in such a way that they may be managed 1in a
dynamic fashion. Most of the data structures of the DL/I
interface are linked-lists. This design affords us the most
convenient way to efficiently utilize the resources of the
system. It is an easy task to use the C language’'s malloc ()
(memory allocate) function to dynamically create the

elements of a list as we need them. In addition, the free()

WL NP S AP S U P LPEPULPUL AL IR S, S TS SR N LA A T N WiE WLAE. Ry

SOt Tl
A e A A .-._i

command is useful in releasing these same elements to be

used again.

D. THE DATA STRUCTURES
The DL/I language interface has been developed as a

single—user system that at some point is to be updated to a

mul ti-user system. Two different concepts of the data are
used in the language interface: (1) data shared by all
users, and (2) data specific to each user. The reader
should realize that the data structures used in our
interface, and described below, have been deliberately made
generic. Hence, these same structures support not only our
DL/I interface, but the other language interfaces as well,
i.e., SEL, CODASYL-DML, and Daplex.

1. Data Shared by All Users

——— - —_———— ST

{' The data structures that are shared by all users,
o are the database schemas defined by the users thus far. In
.I our case, these are hierarchical schemas, consisting of
segments and attributes. These are not only shared by all

users, but also shared by the four modules of the MLDS,

i.e., LIL, KMS, KC, and KFS. Figure 4 depicts the first
data structure used to maintain data. It is important to
note that this structure is represented as a union. Hence,

it is generic in the sense that a user may utilize this

structure to support SGL, DL/I1, CODASYL-DML, or Daplex

DRSNS

needs. However, we concentrate only on the hierarchical

AL
I)
Nt

'.

28

PR TR —— " . ey R AR e

union dbid_node
{

struct rel_dbid_node #rel;

struct hie_dbid_node #hiej;

struct net_dbid_node #net;

struct ent_dbid_node #ent;
¥

Figure 4. The dbid_node Data Structure.

model. In this regard, the second field of this structure
N points to a record that contains information about a

hierarchical database. Figure 5 illustrates this record.
Ej The first +field is simply a charactef array containing the
. name of the hierarchical database. The next field contains
"an integer value representing the number of segments in the
database. The third and fourth fields are pointers to
= . hrec_node records, containing information about each segment
*i in the database. Specifically, the third field points to

- the root segment in the database, while the fourth field

. points to the current segment being accessed. The +Final

field is simply a pointer to the next database.

N struct hie_dbid_node

s
T

char namel{DBNLength + 11];
int num_seg;

X struct hrec_node *root_seq;
struct hrec_node *Ccurr_seq;

struct hie_dbid_node #*next_db;
¥

Figqure 5. The hie_dbid_node Data Structure.

N T T T T T ry—— ® T . . - " " P T —— T ——
s -, A i o e e TR Fal e S it A i A . A . . b

The hrec_node record is shown in Figure 6,y and
contains information about each segment in the database.
The first field of the record holds the name of the segment.
The next field contains the number of attributes in the
segment. The third and fourth fields point to hattr_node

records which contain data on the first and current

{ attributes of the segment. The next three fields point to
{ other records of the same type. They give the schema its

. hierarchical form, pointing to a given segment’'s parent,

first child, and next sibling. And finally, the last two
fields contain the .number of children and siblings that
exist for the given segment in the hierarchical database
. schema.
Figure 7 shows the hattr_node record; the final
record type used to support the definition of the

- hierarchical database schema. The first field is an array

struct hrec_node
{
char namelRNLength + 11;
int num_attr;
struct hattr_node #*first_attr;

struct hattr_node #curr_attr;

struct brec_node #parent;
struct hrec_node #first_child;
i struct hrec_node *next_sibg;
: int num_child;
int num_sibs

-
r

Figure 6. The hrec_node Data Structure.

A BAEP AP AR

aan 4
. R

v A £ ' L i &
PEMEN {‘ LA e,
. Ltete [P

______ ~ T I————— T T———————— e e

struct hattr_node

{
char namelANLength + 113
char types
int lengths
int key_flags;
int multiple;

struct hattr_node +#next_attr;
¥

Figure 7. The hattr_node Data Structure.

which holds the name of the attribute. The second field
serves as a flag to indicate the attribute type. For
instance, an attribute may either be an integer, a +floating
point number, or a string. The characters "i", "“¥", and "s"
are used, respectively. The third +field indicates the
maximum length that a value of this attribute type may
possibly have. For example, if this field is set to ten and
the type of this attribute is a string, then the maximum
number of characters that a value of this attribute type may
bave 1is ten. The fourth field is a flag used to indicate
whether this particular attribute is the sequence field of
the segment. The +fifth field is a flag used to indicate
whether twin segment occurrences of this type may contain
the same sequence field values. The last field simply
points to the next attribute in this segment. The reader
may refer to Appendices B through E to examine the use of

these data structures in the SSL.

- .'..""-"- .-"-.'-_ 1_'-. ~-' ‘.'..>--'~ T e e BT e T L T el A Y
AR IR I SRS IME SIS PR S PRLIP JPRDIAL LI I D SRR W P S

2. Data Specific to Each User

This category of data represents information
required to support each user’'s particular interface needs.
The data structures used to accomplish this may be thought
of as forming a hierarchy. At the root of this hierarchy is
the user_info record, shown in Figure 8, which maintains
information on all current users of a particular language
interface. The user_info record holds the ID of the user, a
union that describes a particular interface, and a pointer
to the next user. The union field is of particular interest
to us. As noted earlier, a union serves as a generic data
structure. In this case, the union may hold the data for a
user accessing either an SGL language interface layer, a
DL/I LIL, a CODASYL-DML LIL, or a Daplex LIL. The li_info
union is shown in Figure 9.

We are only interested in. the data structures
containing user information that pertain to the DL/I, or
hierarchical, language interface. This structure is

referred to as dli_info and is depicted in Figure 18. The

struct user_info

T
A S

char uidfUIDLength + 11;
union li_info li_type;
struct wuser_info #*next_user;

H

Figure 8. The user_info Data Structure.

.. PPN PREREY 77 S S .] I
e e R VT PR SN P PERSC IS T VIR SR
T et et e .. - . - o

. M L - . v - LA N N R P T R N S .. - e P » . . . N
IR WO VY SR I SR, N L. . VRS GRS P PR YRR WY Ty W D W DA DN S DR DU IPG PN T WL W DY W PR

P I

LA
£ 1 1

T

r)

ctat e T et st e L .
et araleetetadetaltoldeldetad o

<

3

Figure

first field of thi
and contains cur
accessed by a user

record. The fil

union 1li_info

struct sql_info
struct dli_info
struct dml_info
struct dap_info

1i_sql;
1i_dl1ig
1i_dmil;
1i_dap;

?. The li_info Data Structure.

s structure, curr_db, is itself a record

rency information

. The second field, file, is also a

on the database being

e record contains the file descriptor and

file identifier of a file of DL/1 transactions, i.e., either

requests or

dli_tran, is also

struct dl

S ¢
struct
struct
struct
int
struct
union
union
int
int
struct
struct
struct
struct
struct
struct
int

¥

Figure 1

AT NN T

P SN Sl Wy -

database

descriptions. The next field,

a record; and holds information that

i_info

curr_db_info
file_info
tran_info

ddl_info
kms_info
kfs_info

hrec_node
hrec_node
Sit_info
Sit_info
Sit_status_info
Sit_status_info

curr_db;

files
dli_tran;
operation;
#ddl _files;
kms_data;j;
kfs_data;
error;

answer ;
saved_seqg_ptr;
saved_seg_ptr2;
#kms_sit;
*sit_list;
*fst_sit_poss;
*curr_sit_pos;
buff_count;

@. The dli_info Data Structure.

(2]
Gl

' P
P I L Lo . S S S

LA A T)

. . . - . - ~ - - «t e MY
N o« e e T T . - “ A
U T P S S W IR T WA TP SAPP U Wi WY Uil U Do Il it W UhO ThAt 1

”Inlj

R TMEREE B RN A A AN N RS N RO A P e Pt Al Dl asO I It s S St S S St D Tt et St Sl das Aty

describes the DL/1 transactions to be processed. This
includes the number of requests to be processed, the first
request to be processed, and the current request being
processed. The fourth field of the dli_info record,
operation, is a flag that indicates the operation to be
performed. This may be either the loading of a new database
or the execution of a request against an existing database.
The next field, ddl_filés, is a pointer to a record
describing the descriptor and template files. These files
contain information about the ABDL schema corresponding to
the current hierarchical database being processed, i.e., the
ABDL schema information for a newly defined hierarchical
database. The following fields, kms_data and kfs_data, are

unions that contain information required by the KMS and KFS.

These are described in more detail in the next four
chapters. The next field, error, 1is an integer value
representing a specific error type. The next field, answer,
is used by the LIL to record answers received through its
interaction with the user of the interface. The next two
fields, saved_seq_ptr and saved_segq_ptr2, are used by the
KMS to save a pointer to the segment in the hierarchical
schema that is last referenced during a previous call to the
KMS. The first field is used by the KMS parser/transiator,
and the second field 1is wutilized during the semantic
analysis in the KMS. The next two fields, kms_sit and

sit_list, are pointers to records that implement the status

34

P IR ST S PR P S s

R T T T T O B L P e
PRI I N SN I LI L SN SIS I LI TP IPRL I DE Y P P D S T D W Wi i W, Ly U, M o

I Anca g st St S iacl Sl dite Jaoi Sot Sin 20 Yidan MRy AR sl sauih Ml S UM AR v AL S Sl S aad il otk st biic et el A At et A S A R el S S —-’

information table (S1IT), as discussed by Weishar
[(Ref. 3: pp. 32-361. They allow the current position of the
database to be maintained. They contain the ABDL
equivalents of the DL/I requests, as well as result files to
hold data retrieved from MBDS by these ABDL requests. The
next two fields, fst_sit_pos and curr_sit_pos, contain
information required by the KC to guide it in the execution
of the translated DL/1 requests. The last field,
buff_count, is a counter variable used in the KC to keep

track of the result buffers.

E. THE ORGANIZATION OF THE NEXT FOUR CHAPTERS

The following four chapters are meant to provide the
user with a more detailed analysis of the modules
constituting the MLDS. Each chapter begins with an overview
of what each particular module does and how it relates to
the other mbdules. The actual processes performed by each
module are then discussed. This includes a description of

the actual data structures used by the modules. Each

chapter concludes with a discussion of module shortcomings.

DA s bt T T TR I IrIr——~ i G s it S At AR A B AU SN Bl JRIL S Ari) Jyes ar-fh S-S JD-EJi At Tl el Sl st S v-""'*w—*

III. THE LANGUAGE INTERFACE LAYER (LIL)

The LIL is the first module in the DL/I mapping process,
and is used to control the order in which the other modules
are called. The LIL allows the user to input transactions
from either a file or the terminal. A transaction may take
the form of either a database description (DBD) of a new
database, or a DL/I request against an existing database. A
transaction may contain multiple requests. This allows a
group of requests that perform a single task, such as a
looping construct in DL/I, to be executed together as a
single transaction. The mapping process takes place when
the LIL sends a single transaction to the KMS. After the
transaction has been received by the KMS, the kKC is called
to process the transaction. Control always returns to the
LIL, where the user may close the session by exiting to the
operating system.

The LIL is menu—-driven. When the transactions are read
from either a file or the terminal, they are stored in a
data structure called hie_req_info. If the transactions are
DBEDs, they are sent to the KMS in sequential order. If the
transactions are DL/I requests, the user 1is prompted by
another menu to select.vely choose an individual request to

be processed. The menus provide an easy and efficient way

NSl Faant Sl Sute Saas 4

R g e S w R N w www rrrrwmeorerves

for the user to view and select the methods of request
processing desired. Each menu is tied to its predecessor,
so that by exiting one menu the user is moved up the "menu
tree". This allows the user to perform multiple tasks 1in

one session.

A. THE LIL DATA STRUCTURES

The LIL uses two data structures to store the user’'s
transactions and control which transaction is to be sent to
the KMS. It is important to note that these data structures
are shared by both the LIL and the KMS.

The first data structure is named tran_info and is shown
in Figure 11. The first field of this record, +first_regq,
contains the address of the first transaction that has been

read from a file or the terminal. The second +Field,

curr_req, contains the address of the transaction currently

being processed. The LIL sets this pointer to the
transaction that the KMS is to process next, and then calls

the KMS5. The third field, no_req, contains the number of

struct tran_info
{
struct hie_req_info #first_reqs
struct hie_req_info #curr_req;

int no_reqs;

M
K

Figure 11. The tran_info Data Structure.

37

B L T AL R A PR R

... v e e T

R
.

SN . S RS e e W IS . . .
- - - - y . « T et . U R S SR TS S - - - - . . - . - P T T T L R S Vi) - » LRI R R A I T Y - - . a
[P PR RS P R AP SIS TSP SN S WL W S U SN SR SN SL WAL WA . SR WAL SRR Wil SR YL S WRE VAR ST WL WS W WL W PR VP, B WPT. PR G .

transactions currently in the transaction list. This number
is used for loop control when printing the transaction list
to the screen, or when searching the list for a transaction
to be executed.

The second data structure used by the LIL is named
hie_req_info. Each copy of this record represents a user
transaction, and thus, is an element of the transaction
list. The hie_req_info record is shown in Figure 12Z. The
first field of this record, req, is a character string that
contains the actual DL/I transaction. The second +field,
in_req, is a pointer to a list of character arrays that each
contain a single line of one transaction. After all lines
of a transaction have been read, the 1line 1list 1s
concatenated to form the actual transaction, req. The third
field of this record, req_len, contains the length of the
transaction. It is used to allocate the correct and minimal
amount of memory space for the transaction. I+ a

transaction contains multiple requests, the <fourth +field,

struct hie_req_info

'
AN

char *reqs
struc: temp_str_info #*in_req;
int req_len;
struct hie_req_info #sub_reqs;
struct hie_req_info #*next_reqs;

M
7

Figure 12. The hie_req_info Data Structure.

.' e . . - - . - = N - - - . ;
e, . T e et e T T e S A S R TSP P A s ! e T e e T
S 2 NN PO S, S A, OO, W SO R, S TR il S ol WA Ny S I WAl U Vi, AP A VP VLA 1S NP S ORI S MU S P s SO R S BUNRRUIL PR R

sub_req, points to the list of requests that make up the
transaction. In this case, the field in_req is the first
request of the transaction. The last field, next_req, is a

pointer to the next transaction in the list of transactions.

B. FUNCTIONS AND PROCEDURES

The LIL makes use of a number of functions and
procedures in order to create the transaction list, pass
elgments of the list to the KMS, and maintain the database
schemas. We do not describe each of these functions and
procedures 1i1n detail. Rather, we provide a general
description of the LIL processes.

1. Initialization

The MLDS is designed to be able to accommodate
multiple users, but i1s implemented to support only a single
user . To facilitate the transition from a single-user
system to a multiple-user system, each user possesses his
own copy of a user data structure when entering the system.

This user data structure stores all of the relevant data

that the user may need during their session. All four
modules of the language intertace make use of this
structure. The modules use many temporary storage

variables, both to perform their individual tasks, and to
maintain common data between modules. The tramnsactions, 1n
user data language form, and mapped kernel data language

form, are also stored in each user data structure. It 1s

- . 3 oo, - . R . . te IR R I TP
L) — AL R . L IR SN N S T W PRI, UL Y. WL SNV VI S S S U S T WA P WP, . WL BT P I Py Y

shown in Figure 5S) with the name of the new datacase, as

input by the user. The LIL then sends the KMS a complete
database definition, which takes the form of a DL/I database

description (DBD) as follows:

DBD NAME= database_name

SEGM NAME= segment_1

FIELD NAME= (attr_1,SERL,M]1), [TYPE=type,]l BYTES= length
FIELD NAME= attr_2, [TYPE=type,]l BYTES= length

FIELD NAME= attr_i, [TYPE=type,]l BYTES= length

SEGM NAME= segment_2

FIELD NAME= (attr_1,SEQL,M]1), [TYPE=type,]l BYTES= length
FIELD NAME= attr_2, [TYPE=type,] BYTES= length

FIELD NAME= attr_j, [TYFE=type,]l] BYTES= length
SEGM NAME= segment_3

SEGM NAME= segment_n

The sequence of statements in the DED is
significant. Specifically, SEGM statements have to appear
in the sequence that reflects the hierarchical structure,
i.e., top to bottom, left to right. Also, each SEGM
statement has to be immediately followed by the appropriate
FIELD statements. The FIELD statement for the sequence
field (indicated in the DED example by SERQ) has to be the
first such statement for the segment. The sequence field is
taken to be unique, unless M (multiple) is specified. I+ M
is specified, two occurrences aof the given segment type may
have the same value for the sequence field. If the optional

TYFE specification is omitted, the data type CHAR is the

53

field, result_file, is used in the KC to accumulate results

obtained from MBDS when executing the ABDL requests.

At the end of the mapping process, before control is
surrendered to the LIL, all data structures that are unique
to the KMS which have been allocated during the mapping

process are returned to the free list.

B. FACILITIES PROVIDED BY THE IMPLEMENTATION

In this section, we discuss those DL/I facilities that
are provided by our implementation of the hierarchical
interface. We do not discuss the DL/I-to-ABDL translation
in detail. Rather, we provide an overview of the salient
features of the KMS, accompanied by one illustrative example
of the parsing and translation processes. User—issued

requests may take two forms, DL/I database definitions, or

DL/I database manipulations. In the case of database
manipulations, we also describe the semantic analysis
necessary to complete the mapping process. Appendix C

contains the design of our implementation, written in a
system specification language (5SSL).
1. Database Definitions
When the user informs the LIL that the user wishes
to create a new database, the job of the KMS is to build a
hierarchical database schema that corresponds to the

database definition input by the user. The LIL initially

allocates a new database identification node (hie_dbid_node

52

L T e . . Lo - -
- - ~* '-.-‘ - N A .t - . - " oa - . . - - . - . Wt h
T T N T T T T T e T e Y T e e T T T Y T e e T T e T T T S Y (N
LIPS W SPNE R PN W R, WAL PSP S AP LIPS PP, PP GIP R & G PS TSRS G SR, VR W S SR N Sl Wi S S Sl T Wik S O L ST S

pointers are required because some multiple ABDL requests
are generated into a 1linear 1list by the KMS, through a
depth—first search of the hierarchical schema, i.e., a tree
walk that effectively flattens the tree. However, such
multiple requests have to be processed by the KC in a
hierarchical, rather than linear, fashion. Thgs, the
parent, child and sibling pointers preserve the hierarchical
form of the linear lisf, i.e., the flattened tree. The
foilowing two fields, loop and nf_loop, are pointers that
indicate a looping construct in the DL/I input request,
i.e., a "label name" declaration, accompanied by a
GOTO "label name" statement. The next field, abdl_req, is a
pointer to the actual ABDL request generated by the KMS.
The following two fields, operation and cmd_code, are flags
indicating the DL/I operation desired (e.g., GU, GN, GNF,
».0y etc.), and which command code, if any, 1s resident in
the DL/1 source request. The next field, or, indicates
whether there is an "or" in the resulting ABDL request.
This is used by the KC during the completion of AEDL
requests that may not be fully—-formed by the KMS. The kC
uses the next field, template, as working space for these
purposes. The following field, seg_name, contains the
segment name of the translated request. The next two
fields, BOR and EOR, mark the beginning and end of multiple

ABDL requests for control purposes in the KC. The last

51

£ -:1

A A e e i

the database is 1limited only by the constraint placed on
them by the user in the original database definition, and as
such, they may be of varying lengths.

The remaining KMS data structure, shown 1in Figure
15, is our implementation of the status information table
(SIT) discussed by Weishar [Ref. 3: pp. 32-36]. The KMS, in
general, maps a single DL/l request to multiple ABDL
requests. We require one Qit_info record corresponding to
ea&h of theée ABDL. requests. The first two fields, prev and
next, are pointers to other records of the same type that
connect the records in a linearly-linked 1list. The next
three fields, parent, child and sibling, are pointers that

interconnect the records in a hierarchical manner. These

struct Sit_info

{

struct Sit_info *prevs
struct Sit_info *next;
struct Sit_info #*parent;
struct Sit_info *child;
struct Sit_info #sibling;
struct Sit_info *]1 oop;
struct Sit_info #n+_loop;
char *abdl _reqs;
int operation;
int cmd_code;
int or;

char *template;
char seq_namelRNLength + 113
int BOR;

int EOR;

struct hie_file_info #result_file;

Figure 15. The Sit_info Data Structure.

S0

.........
.....

R T T s T e T T Ty Ty oy Yy Ty vy Yy sy vy E Ly yovyry vy oy

struct syhbolic_id_info

- {

char namelANLength + 1];
int lengths;
struct symbolic_id_info #*next_attr;

3

struct insert_lists

4
char *list;
int insert_attrs;
int insert_vals;
char , seg_namelRNLength + 11;
struct hrec_node #seq_ptr;
struct insert_lists #*next_list;

b

struct 1insert_info

{
char attr[ANLength + 11]1;
char #value;
char types;
struct insert_info #*next_val;

¥

Figure 14. Additional KMS Data Structures.

insert_lists node contains the number of insert_attrs
{attributes to be inserted) and the number of insert_vals
(values to be inserted) for a given insert list, as well as
the segment name and a pointer to that segment in the
hierarchical schema. Each insert_info item contains the
attribute name, attribute value, and type information
corresponding to the item that is to be inserted into the
database. It should be noted that the value field in the
insert_info record is a pointer to a variable-length
character string. Although attribute names have a constant

maximum—length constraint, the length of attribute values in

49

P T A N 4

S e R S N R R T N N TR N W iy ey

struct hie_kms_info

{
struct symbolic_id_infa #*tgt_list;
struct insert_lists *insert_list;
char *temp_str;

}

Figure 13. The hie_kms_info Data Structure.

item, which points to a single insert list. However, in the
case of multiple path insertion (i.e., ISRT, specifying
command code D), this list contains an item that points to
each 1insert 1list, corresponding to each segment to be
inserted. Each insert list, then, holds the values that an
ISRT request desires inserted into the database for a given
segment. The third field, temp_str, is a pointer to a
variable-length character string. The character—-string
length is a function of the input request 1length, and is
allocated, when required, to accumulate intermediate
translation results while parsing the boolean predicates
that optionally follow the segment name in the segment
search argument (SS5A) of a given user request.

The next three data structures, shown in Figure 14,
are records that are pointed to by the hie_kms_info record,
as just described. Respectively, they represent a 1list of
attribute names (the target 1list), a list of insert list
nodes, and a list of attribute values (the insert list(s)).
ANLength and RNLength are constants defining the maximum

lengths of attribute and segment names, respectively. Each

48

- w'v".v'.v'.".'-,

higher—-level rule has been satisfied, at which time further
translation 1is accomplished. When all of the necessary
lower—-level grammar rules have been satisfied and control
has ascended to the highest-level rule, the parsing and
translation processes are complete. In Section B, we give
an illustrative example of these processes. We also
describe the subsequent semantic analysis necessary to
complete the mapping proceés.
2. The KMS Data Structures

The KMS utilizes, for the most part, Jjust +five
structures defined in the interface. It, naturally,
requires access to the DL/I input request structure
discussed in Chapter 11, the dli_tran structure. However,
the five data structures to be discussed here are only those
unique to the KMS.

The first of these, shown in Figure 13, is a record
that contains information accumulated by the KMS during the
grammar—driven parse that is not of immediate use. This
record allows the information to be saved until a point in
the parsing process where it may be utilized in the
appropriate portion of the translation process. The first
field in this record, tgt_list, is a pointer to the head of
a list of attribute names. These are the names of those
attributes whose values are retrieved from the database.
The second field, insert_list, is a pointer to the head of a

list of insert lists. This list generally contains a single

37

———

Y

input streams. Given a

structure (a set of grammar rules), the user’'s code to be

invoked when such structures are recognized, and a low-level

input routine, YACC gener

recognizes the input language and allows invocation of the

user ‘s code throughout th
of specifications accep
grammars. It is importan
meationed above is our ma
the DL/I-to-ABDL transl
routine, we utilize a
fRef. 161. LEX is a prog
processing of character
expression description of
program that partitions
communicates these tokens
The parser produc
state automaton with a s
with left-to-right scan a
of the parser begins
grammar rule. Control
hierarchy, calling lower
search for appropriate
appropriate tokens are
mapping code may be invok

tokens are propagated ba

DA A it oA At in® St o et et it g it i e, it St S At S 7r

specification of the input language

ates a program that syntactically

is recognition process. The class
ted 1is a very general one: LALR(1)
t'to note that the user’'s code
pping code that is going to perform
ation. As the low-level input
Lexical Analyzer Generator (LEX)
ram generator designed for lexical
input streams. Given a regular-
the input strings, LEX generates a
the input stream into tokens and
to the parser.
ed by YACC consists of a finite-
tack and performs a top—down parse,
nd one token look-ahead. Control
initially with the highest-level
descends through the grammar
and lower-—level grammar rules which
tokens in the input. As the
recognized, some portions of the

ed directly. In other cases, these

ck up the grammar hierarchy until a

46

Qeagocsd | COCOOCOE) EENEINEY MCICASSSS . MAATENSD coxs
Pt . B . Lt e . . ., R

|

L/ AR A R Sa A g &

IV. THE KERNEL MAPPING SYSTEM (KMS)

The KMS 1is the second module in the DL/I mapping
interface and is called from the language interface laver
(LIL) when the LIL has received DL/I requests input by the
user. The function of the KMS is to: (1) parse the request
to validate the user’'s DL/f syntax, (2) translate, or map,
thé request to equivalent ABDL request(s), and (3) pe?form
a semantic analysis of the current ABDL request (s)
generated, relative to the request(s) generated during a
previous call to the KMS. Once an appropriate ABDL request,
or set of requests, has been formed, it is made available to
the kernel controller (KC) which then prepares the request

for execution by MBDS. The KC is discussed in Chapter V.

A. AN OVERVIEW OF THE MAPPING PROCESS

From the description of the KMS functions above we
immediately see the requirement for a parser as a part of
the KMS. This parser validates the DL/I syntax of the input
request. The parser grammar is the driving force behind the
entire mapping system.

1. The KMS Parser / Iranslator

The KMS parser has been constructed by utilizing

Yet-Another—-Compiler Compiler (YACC) [Ref. 151. VYACC is a

program generator designed for syntactic processing of token

45

A R -

- - - IR A A i A T

st Aot i B Sh A Sa At S s Taias 3

has been sent to the KMS, the KC is immediately called. The
mapped DL/I requests are placed on ; mapped transaction
list, which the KC may easily access.

S. Wrapping-up -

Before exiting the system, the user data structure
described in Chapter I1 has to be deallocated. The memory
occupied by the user data structure is freed and returned to
the operating system. Since all of the user structures

reside in a list, the exiting user ‘s node has to be removed

from the list.

44

LI Sianty

M.

Pick the number or letter of the action desired

(hum) — execute one of the preceding transactions
(d) ~ redisplay the list of transactions
(r) - reset the currency pointer to the root
(%) — return to the previous menu

ACTION ————>

Since DL/I requests are independent items, the order in
which they are processed does not matter. The user has the
option of executing any number of DL/I requests. A loop
causes the menu to be raedigplayed after any DL/I request has
been executed so that further choices may be made. The "r*
selection causes the currency pointer to be repositioned to
the root of the hierarchical schema so that subsequent
requests may access the complete database, rather than be
limited to beginning from a current position established by
previous requests.
4. Calling the KC

As mentioned earlier, the LIL acts as the control
module for the entire system. When the KMS has completed
its mapping process, the transformed transactions have to be
sent to the KC to interface with the kernel database system.
For DBDs, the KC is called after all DBDs on the transaction
list have been sent to the KMS. The mapped DBDs have been
placed in a mapped transaction list that the &KC 1is going to
access. Since DL/I requests are independent items, the

user should wait for the results from one DL/I request

before issuing another. Therefore, after each DL/I request

7'1'»_-‘A'.'..

'-'v-r'
R [}
ALY '

. l?l‘lr.f
e e

accesses a single transaction from the transaction list. It
does this by reading the transaction pointed to by the
request pointer, curr_req, of the tran_info data structure
(see Figure 11)., Therefore, it is the job of the LIL to set
this pointer to the appropriate transaction before calling
the KMS.
a. Sending DBDs to the KMS

When the user épecifies the filename of DBDs
(iﬁput from a file only) further user intervention is not
required. To produce a new database, the transaction 1list
of DBDs is sent to the KMS via a program loop. This loop
traverses the transaction list, calling the KMS for each DBD
in the list.

b. Sending DL/I Requests to the KMS

In this case, after the user has specified the
mode of input, the user conducts an interactive session with
the system. First, all DL/l requests are 1listed ¢to the
screen. As the requests are listed from the transaction
list, a number is assigned to each transaction in ascending
order, starting with the number one. The number appears on
the screen to the 1left of the Ffirst line of each
transaction. Note that each transaction may contain

multiple requests. Next, an access menu is displayed which

looks like the following:

selected +rom the previous menu had been "p", then the user

may also input transactions interactively from the terminal.

The generic menu looks like the following:

Enter mode of input desired

ACTI

(f) — read in a group of transactions from a file
(t) - read in transactions from the terminal
(x) — return to the previous menu

ON ———>

Note that the "t" choice would be omitted if the operation

selected

from the previous menu had been to load a new

database. Again, each mode of input selected corresponds to

a differ

is creat

an end-

These 1

T—T'xr‘rv‘lv, b
P e e N

and whe
being c

initiali

D A S e 4 LARARAS
L e

been des

Both po

other wo

T
e

ent procedure to be performed. The transaction list
ed by reading from the file or terminal, looking for
of—transaction marker or an end-of-file marker.
ags tell the system when one transaction has ended,
n the next transaction begins. When the list is
reated, the pointers to access the list are
zed. These pointers, first_req and curr_req, have
cribed earlier in the data structure subsection.
inters are set to the first transaction read, in
rds, the head of the transaction list.

Since the transaction list stores both DBDs and DL/1

requests, two different access methods have to be employed
to send the two types of transactions to the KMS. We
discuss the two methods separately. In both cases, the KMS
41
e R e e e e e e e e e e -

easy to

centralized control for each user of

R R L Mg Shull e Went Riai, Amat Ay

user logs onto
allocated and in
distinguishing fe

users.

a linked-list.

data structures are appendéd to the end of the list.

current
user list.
users,

2.

There are two operations the user

user

against an

W

environment

In a future environment,

may define

existing database.

Lt et odh Sa i - egn) T T —

see that the user structure provides consolidated,

the system. When a
the system, a wuser data structure is
itialized. The wuser ID becomes the
ature to locate and identify different

The user data structures for all users are stored in

hen new users enter the system, their user
In our
there is only a single element on the

when there are multiple

we simply expand the user list as described above.

—— o o o S i s s e e e i

may perform. A

a new database or process DL/I requests

The +irst menu that 1is

displayed prompts the user to select the operation desired.

Each operation represents a

specific circumstances.

Enter type

(1)

separate procedure to handle

The menu looks like the following:

of operation desired
load a new database

(p) - process old database
(x) = return to the operating system
ACTION ———> _

For either choice (i.e.,

1 or p),

another

menu

displayed

to

the

user requesting the

input may always come from a data file.

4@

mode of input.

If the opera

I S A R T T S TS
PO R M R N L IR A S

"-_‘.._'-\'.. S

et .

is
This

tion

AR
LY I WL VR L)

P

s e _“a
A

i

default. For each SEGM statement, an additional segment
node (hrec_node shown in Figure 6) is added to the database
schema under construction. For each subsequent FIELD
statement, an additional attribute node (hattr_node shown in
Figure 7) is added to the schema for the current segment
under construction. The database identification node
(hie_dbid_node shown in Figure 35) holds fhe number of
segments in the schema aﬁd the database name, each segment
noae holds the number of attributes in that segment and the
segment name, and each attribute node holds the attribute
name, type, length, and sequence field information.

When the KMS has parsed all the statements included
in the DERD, the result is a completed database schema, as
shown in Figure 16. Not shown in Figure 16, is the list of
attribute nodes that is connected to each segment nade. The
hierarchical database schema, when completed, serves two
purpoases. First, when creating a new database, it

facilitates the construction of the MBDS template and

descriptor Ffiles. Secondly, when processing requests
against an existing database, it allows a validity .ock af
the segment and attribute names. It also serves as source

of information for type—checking.

~

2. Database Manipulations

When the user wishes the LIL to process requests

PR

vr_rv.f. e v
[T . R
P

against an existing database, the first task of the kMS 1sg

) rV.Y
-

to map the user ‘s DL/I request to equivalent ABDL requests.

AR A A A At St et Al B it g i i St Jaat it ires i iatts it St g it Sat e i d gt gt Syt Shui S Rl b AR T S S
——— +
{ DBID |
——t——
4
1]
———t———t
{ SEG_1 |
t——————+
L]
1]
[] 1]
[]]
]]
t 1
———t—— ———t———
{ SEG_2 | { SEG_i !
F—————t ——————
L])
L] 1
——t——t + + +
) [) 1] 1
1] 1 L] 1
] 1
- - L}]
: : —————— —————t
! SEG_j | { SEG_n !
4 ——— ——————— +

Figure 16. The Hierarchical Database Schema.

a. The DL/I GET Calls to the ABDL RETRIEVE

The DL/I GET calls consist of the GBet Unigue
(GU), Get Next (GN), and Get Next within Parent (GNP)
operations. The fact that each of these calls 1is quite
diffefent in functionality is of little concern to the KMS
parser/translator. All of these calls have identical +form,
syntactically, with the exception of the DL/I operator,
i.e., GBU, GN, GNP. Therefore, the KMS maps each DL/I GET
call to an equivalent ABDL RETRIEVE request, or, as in most

cases, a series of ABRDL RETRIEVE requests. An operator

R T T R s -~ . I S sandh Shafh - At i Sad Shgn B aL gl I g g A B 8 o _‘

identification flag is set during the translation process
which allows the KC to associate the appropriate operation

to these requests for controlling their execution.

gy e
Lo BT | RN .

The DL/I GU operation is a direct retrieval, and

‘u 'i
P A

as such, has to specify the complete hierarchical path to

the desired segment. That is, it specifies the segment type

p.
N

at each 1level of the database, from the root down to the

desired seéaént, togethef with an optional occurrence—
idéntifying condition for each segment type. (Collectively,
such a specification, at each level, is referred to as a
segment search argument for that level/segment.) An example

of such a call is as follows:

T P 3 .

6U course (ctitle = "mlds’)
offering
student
This call retrieves information concerning the first

occurrence of a student enrolled in the course entitled
"mlds". The series of AEDL requests generated for such a

call is as follows:

{ RETRIEVE ((TEMPLATE = COURSE) and
(CTITLE = Mlds))
(CNUM) BY CNUM 1]

L RETRIEVE ((TEMPLATE = JOFFERING) and

(CNUM — *%x%))
(DATE) BY DATE 1

56

o

R e e e e e e e e e e A
At ataaa altea o ata et el atar At A A T e L

YT
e . ot

A LN [t Anl BN

L RETRIEVE ((TEMPLATE = STUDENT) and
(CNUM = *%%%) and
(DATE = #%#%%%))
(SUM, SNAME, GRADE) BY SNUM 1]

Notice that only the first RETRIEVE request generated is
fully—formed, i.e., may be submitted to MBDS "as-is".
Subsequent requests may not be completed until the
appropriate sequence-field values have been obtained from
the execution of previous requests. This process takes
place in the KC. The KMS uses asterisks, as place holders,
to mark the maximum allowable 1length of such sequence
fields. Each RETRIEVE request, with the exception of the
last, is generated solely to extract the hierarchical path
to the desired segment. (By so doing, they allow the KC to
establish and maintain the current position within each
segment referenced in a DL/I call.) Consequently, the only
attribute in each target 1list 1is that of the segment
sequence field. O0f course, the target list of the last
request contains all the attributes of the desired segment.
It is the information obtained from the execution of the
final request which is returned to the user, via the KFS5.
Also of note is that each request includes the optional ABDL
"BY attribute_name” clause. The work of Weishar
[(Ref. 3: pp. 39-42]1] has proposed that the results obtained
from each RETRIEVE request would be sorted by sequence—-field

value in the 1language interface. We chose to let the KDS

57

DR AR An A s el Pr——— . y
. AR A PRI
. . R L PRI

b

T

(i.e., MBDS) perform this operation through the inclusion of
a "BY sequence_field" clause on all ABDL RETRIEVE requests.
The DL/I GN and GNP operations are sequential
retrievals. As such, they may each contain a looping
construct. Such a construct takes the form of a label that

precedes the GN or GNP operator, and a GOTO statement

following fhe last segment search argument of the DL/I call.
GN and GNP operations ére predicated on the fact that a
prévious DL/I call has established a current position within
the database. Therefore, unlike the GU operation, they need
not specify the complete hierarchical path from the root to
the desired segment. This does, however, make it necessary
to semantically analyze the GN or GNP, and the previous DL/I

call. This analysis 1is discussed in Subsection 3. An

example of such a call is as follows:

%X GNF student
GOTO xx

This call retrieves information concerning the next
occurrence of a student enrolled in the course, and the
offering of that course, which have been established as the
current COURSE and OFFERING segments within the database by
the previous GET operation (of any type) or ISRT operation.

The ABDL request generated for such a call is as follows:

58

T——

DT . S et Lt T, T T T e T T e T e s e e e T e T T e T T T T
PTG VIR PSR S PUN PE VR PR PR PN RO YRR W WEE W R R WA Wl W vl W W W Y x.'.i

VY“‘“T

A AR L L. Rt A M A 0 A O A A iad AL CETEE e e U At N " PR P AL A S

L RETRIEVE ((TEMPLATE = STUDENT) and
(CNUM = %*¥%%#) and
(DATE = ##%x%%#))
(SNUM, SNAME, GRADE) BY SNUM 1]

There is no indication, from the ABDL request generated,
that the DL/I call contained a looping construct. However,
a loop pointer is set during the translation process which
allows the KC to discern that a looping construct exists and
the extent of such a construct. The KMS translator
recognizes that the first segment search argument of this

DL/I call does not specify the root segment as its segment

type. Consequently, it performs a tree walk of the
hierarchical schema, in reverse order, to obtain the
sequence fields required to complete the translation

process, i.e., those that specify the complete path from the
root to the segment concerned; in this case, CNUM and DATE.
The GN and GNP operators may also be used to
perform sequential retrieval without the ;pecification of
S8As. In the case of the GN operator, such a call retrieves
all of the segments (of all types) subordinate to the last
segment type referenced in the previous DL/I call, which
established the current position within the database. The
GNP operator functions similarly, except that instead of
retrieving all subordinate segments, it only retrieves
subordinate child segments, i.e., it does not retrieve

segments below the immediate children of the current parent

59

B 2 Iansh gh 2 na

- -

By ..

(e S M S A0 A ibde Aote 00t AR S0 A A B B Thadt A At il Aot ek Jants AU tuiea gl i S AL A M Al - il e ————
- e - ST L N . - ot

segment. Since no SSA is specified, the KMS translator has
to save the identity of the last segment type referenced in
each DL/1 call. Since the KMS does not know when it might
receive such a DL/I call, this allows the translator to
identify where the sequential retrieval begins for such a
DL/1 call, i.e., which segment types constitute
"subordinate" segments. An example of such a call 1is as

follows:

-

vy GN
GO0TO vyy
Assuming that the previous DL/I call is simply "GU course",

the series of ABDL requests generated are as follows:

[RETRIEVE ((TEMPLATE = PRERE®) and
(CNUM = %®%%4%))
(PNUM, PTITLE) BY PNUM 1

[RETRIEVE ((TEMPLATE = OFFERING) and
(CNUM = **#%%))
(DATE, LOCATION, FDRMAT) BY DATE 1

[RETRIEVE ((TEMPLATE = TEACHER) and
(CNUM = ##x#%) and
(DATE = #%##t%%%))
(TNUM, TNAME) BY TNUM 1]

[RETRIEVE ((TEMPLATE = STUDENT) and
(CNUM = #»xx%) and

(DATE = #%%3%%%))
(SNUM, SNAME, GRADE) BY SNuM 1

If subordinate segments for PRERER, TEACHER or STUDENT were

in the database, appropriate RETRIEVE requests would have

60

been generated for those segment types also, i.e., PREREQ,

TEACHER and STUDENT are the leaves of our example database.
However, if our example DL/I call contained GNP, instead of
GN, only the RETRIEVEs for PRERER and OFFERING would be
generated, i.e., only the children of COURSE in our example
database. Also, notice that each request includes all
attributes for that segment type in its target list. That
is, complete information ébnut each of these segments is to
be-returned to the user.
b. The DL/I GET HOLD Calls to the ABDL RETRIEVE

The DL/1 GET HOLD calls consist of the Get Hold
Unique (GHU), Get Hold Next (GHN), and Get Hold Next within
Farent (GHNF) operations. A DL/I GET HOLD call is used to
retrieve a given segment occurrence into a work area, and
hold it there so that it may subsequently be updated or
deleted. ABDL does not have this requirement. Therefore,
when the KMS parser encounters one of these calls, the KkMS
translator treats them as a corresponding GET call. With
the exception of the "H", the general form of the GET HOLD
calls 1s identical to the forms of the non-HOLD (i.e., GET)
counterparts. Thus, the mapping processes described in the
previous subsection are applicable t6 the GET HOLD calls,
with the exception of the special case of sequential
retrieval without the specification of 55As. Such a call

has no meaning with a GET HOLD operator.

&1

c. The DL/I DLET to the ABDL DELETE

The DL/I DLET consists of a GET HOLD call,
together with the reserved word DLET immediately following
the last SSA in the GET HOLD portion of the call. When the
KMS parser encounters the GET HOLD portion of the call, the
KMS translator generates the appropriate ABDL RETRIEVE
requests. Then, when the reserved word DLET is parsed, the
KMS translator generates aﬁpropriate ABDL DELETE requests to
deiete the current segment occurrence (i.e., for the current
position just established by the GET HOLD portion of the
call), as well as all of the children, grandchildren, etc.
{i.e., the descendants) of the current segment occurrence.

An example of such a call is as follows:

GHU course (ctitle = "mlds’)
offering
DLET

Assuming that there is only one offering of the course
entitled "mlds", this call deletes the occurrences of that
course and oftering, along with all the teachers and
students associated with them. The series of ABDL requests

generated for such a call is as follows:

MR T L i T P P EYR A e aw DI
R R R R T R TR T A AR NN

LI . . N e e e Lt e - ot et .. e e e P L S A
S e e e AN Lot e T S R) .
LT S A S SORESIRE S P NSRS\ S VP SNV SO SN VRV SRR U N R o WA B N

LN

.......

LG L A R A e) e A A A A S AR I el e S e L A A IS A

£ RETRIEVE ((TEMPLATE = COURSE) and
(CTITLE = Mlds))
(CNUM) BY CNuM 1

L RETRIEVE ((TEMPLATE = OFFERING) and
(CNUM = ##%%))
(DATE) BY DATE 1

[DELETE ((TEMPLATE = OFFERING) and
(CNUM = »%%%*) and
(DATE = *¥%#%%%))]

L DELETE ((TEMPLATE = TEACHER) and
(CNUM *#%%#) and
(DATE HHHN%E))]

[DELETE ((TEMPLATE = STUDENT) and
(CNUM = ####) and
(DATE = ###%%#%))]

In general, a single RETRIEVE request is generated for each
SSA in the GET HOLD portion of the DL/I DLET. Then, for
each segment type subordinate to the segment type referenced
in the last §5S5A: (1) i¥f the segment type is a leaf, a
single ABDL DELETE is generated for that segment, and
(2) if the segment type is not a leaf, a pair of AERDL
requests are generated for that segment, one RETRIEVE and
one DELETE. In our example, TEACHER and STUDENT are leaf
segment types, and thus, no additional RETRIEVE requests are
generated for those segment types. Notice that each
RETRIEVE request simply retrieves the sequence—+field
attribute for the appropriate segment type. The sequence-
field values are all that is required, since no information

is returned to the user as a result of these RETRIEVE

63

- NS AR P .
R e .. TR T N e e e mt A N
CWRE R Y S R S P LIRS SR B N, A TR U TR TR W Tl Wy W O P P 1PN DY PRSPy A

e WL VYL WY YUY Y YT YT T e T - - e e e e w W C Bl T A" Sl Bl B i S TR i i S *Hadi” A S AR s S 2 S §

~ .

N A s T " IR TRCIN
il PGP LS PO LY, O LN S, Y.y

......

requests. These are the values required to complete the
DELETE . requests, specifying the complete hierarchical path
from the root to the segment to be deleted.
d. The DL/1 REPL to the ABDL UPDATE

We are implementing DL/I in an interactive
language interface. However, DL/1 is an embedded database
language that is invoked from a host language (i.e., PL/I,
COROL , or System/370 Aésembler Language) by means of
subroutine calls. The syntax for providing an appropriate
attribute-value pair to be changed during a DL/I REPL call

is resident in the haost language, not in the DL/I data

language 1itsel+. In order to make an embedded 1language
function interactively, we are forced to introduce
additional syntax for the language interface. This

additional syntax does not represent a change to the DL/I
data language, but rather, serves only to facilitate our
interactive implementation of the normally embedded data
language, DL/1. Therefore, we have implemented the
following syntax in the DL/I REPL which allows the user to

input the attribute-value pair they desire to change:

CHANGE attribute_name TO attribute_value

The DL/I REFL consists of a GET HOLD call, with our
additional syntax immediately following the last SS5A in the
GET HOLD portion of the call, and then the reserved word

REFL. When the KMS parser encounters the GET HOLD portion

b4

e S T

A A AC LA EC A A AN A AR v SN AN A S A A A A AN EiE AP S S AN M SN g s SN s el, |

of the call, the KMS translator generates the appropriate
ABDL RETRIEVE requests. When the KMS parser encodnters our
additional syntax, it saves the attribute-value pair in
local variables for subsequent use by the KMG translator.
Then, when the reserved word REPL is parsed, the KMS
translator generates the appropriate ABDL UFPDATE request to
update the current segment occurrence, i.e., for the current
position Jjust established by the GET HOLD portion of the

call. An example of such a DL/I REPL call is as follows:

GHU course (ctitle = ‘mlds’)
prereq (ptitle = “mdbs’)
CHANGE ptitle TO “mbds’

REPL

The series of ABDL requests generated for such a DL/I REFL

call is as follows:

[RETRIEVE ((TEMPLATE = COURSE) and
(CTITLE = Mlds))
(CNUM) BY CNUM 1]

[RETRIEVE ((TEMFLATE = PREREQ) and
(CNUM = »#*%%) and
(PTITLE = Mdbs))
(PNUM) BY PNUM 1

L UPDATE ((TEMPLATE = FRERER®) and
(CNUM = ##%%) and
(PNUM = ##3%%))
<{PTITLE = Mbds> 1

65

Te e A a2 2 tam et et J

LRSS S

ST et L e . e .
[S N, SRS, SRS, SR TP, P st S S S S SUUE Y, R S S S S, P S

Notice that each RETRIEVE request vsimply retrieves the
sequence~-field attributes for the appropfiate segment type,
i.e., like the DL/I DLET, no information is returned to the
user as a result of these RETRIEVE requests. As is the case
with ABDL, we may only update a single attribute value in
each DL/I REPL call. However, each DL/I REPL call updates
that particular attribute-value pair in all multiple record
occurrences that may exist;
e. The DL/I ISRT to the ABDL INSERT

As in the case of the DL/I REPL, we are forced
to introduce additional syntax to allow the DL/I ISRT to
function in our interactive language interface. In this
instance, we bhave implemented the following syntax for the
DL/I ISRT, which allows the user to build the new segment to

be inserted to the database:
BUILD [(attr_1, ..., attr_n)l : (value_1, ..., value_m

If values are to be inserted +for each attribute of the
segment type, there is no requirement to list the attribute
names. Only the attribute values need be listed. However ,
they have to appear in the same order in which they were
defined during the original definition of the database. A
value for the sequence-field attribute may not be omitted
from the list. Due to the ABDL requirement that the INSERT
request include values for all attributes, in the case where

the user does not specify values for all attributes in the

bbb

tmr o aaih . l Mam e Aat e alalata eta A s e”

segment, the KMS translator inserts default values. We use

a zero (@) and a "ZIz" as the default values for the data
types integer and character, respectively.

The DL/I ISRT consists of our additional syntax
to build a new segment occurrence, followed by a sequence of
S5As, the first of which is preceded by the reserved word
ISRT. This sequence of §SSAs has to specify the complete
hierarchical path from tﬁe root to the segment to be

inserted. An example of such a call is as follows:

build (tnum, tname) : (1234, ‘hsiao’)
isrt course (ctitle = ‘mbds’)
offering (date = 850430)
teacher

The series of ABRDL requests generated for such a DL/I ISRT

call is as follows:

L RETRIEVE ((TEMPLATE = COURSE) and
(CTITLE = Mbds))
(CNUM) BY CNuUM 1

[RETRIEVE ((TEMPLATE = OFFERING) and
(CNUM = »#%%) and
(DATE = 85@43Q))
(DATE) BRY DATE 1]

[INSERT ({TEMFPLATE, TEACHER>,
ZCNUM, %%
qDATE, IR
<TNUM, 1234,
<TNAME, Hsiao>») 1]

67

oy

- PR
et T .. B L T T S S P S S S S S S Y .‘.‘-‘.‘
WP I TP ST S Wl TR VA . U Sl LA S WA VLA S AP SRIr VAT SR TP Sl P L I . PR . Sl AP PR RY O P PR VSV T P T VK T DY v v e

ICaNE - ath st St Arib i ANic Rl Ed Nl AL A A A N A A T MR R N A L A T R ﬁ;ﬁ'jr_—v-,‘

C. FACILITIES NOT PROVIDED BY THE IMPLEMENTATION

Owur original intent has been to demonstrate that the
hierarchical interface could indeed be developed and
implemented. There are some facilities of DL/I that are not
included in our implementation. Some of these facilities
have more to do with providing an environment +for the
running of batch applications, than with supporting a
germane hierarchical interface. For others, the programming
ti;e and effort required to incorporate them would be too
costly for the benefits derived. However, this is not to
imply that such facilities would not be useful. This
section is devoted to describing the most prominent features

of DL/I that are not supported by the language inter+face.

1. Interfacing the User

In our hierarchical interface, there is no concept
of types of logical database records (LDERs). An LDBRR type
may be thought of as a hierarchical arrangement of segment
types derived <from the underlying physical database record
(FDBR) hierarchy. Any segment type of the FDBR hierarchy
may be omitted from the LDBR hierarchy, and the attributes
o2f an LDBR segment type may be a subset of those of the
corresponding PDER segment type. However, under our
1implementation, the logical database and the physical
database are one in the same. Therefore, our interface is
limited to data definition language (DDL) and data

*

manipulation language (DML) statements, and provides no data

81

Ca e P PR PR L R
g oLt PN e T T e e e e e e T S e T e e -._‘v.,. N
N S I S IR I SR I PRSI S R U AP TR W S S Sk e o W Y. U P s Y. W LT PO U/ W S S T P P CR, DO,

i Eade il gl Sl gl oad e B - a0 i A Sl A L GO Gl Avis SAG SR i ssed sl Suni Rt e aeed meees) Lo i - ot Iy e - Pt Pl . o .’

-

3. Semantic Analysis

When the user -desires to process DL/I requests
against an existing database, the KMS +first forms the
equivalent ABDL requests. Then the KMS performs a semantic
analysis of these current ABDL requests, relative to those
requests generated during the previous call(s) to the KMS,
The current ABDL requeéts are then integrated with thaose
requests generated for the.previous call, in a manner that
deﬁends upon the outcome of the semantic analysis.

In general, semantic analysis is only required when
the current DL/I call is of the GN or GNP variety. Since
these operations do not require the user to specify the
complete hierarchical path, from the root to the desired
segment, they have to be semantically analyzed relative to
the previous DL/1 GET operation (of any type) or ISRT
operation. Specifically, the segment type referenced in the
first SSA of the 6N or GNP has to either : (1) match one of
the S5As in the previous DL/I call, in which case the two
requests overlap, or (2) be the next segment type in the
hierarchical path that logically follows the last S5A of the
previous DL/I call, in which case the current call is a

continuation of the previous call.

80

P A S K .~'.~'.-‘.-'.-;j
PRI S T IR S

(4) Command Code V. DL/I GNP calls only
retrieve segments of the current parent type, as established
by the previous DL/I call. By using the V command code, any
ancestor may be designated as the current parent type.

Therefore, the following sequences of DL/I calls retrieve

identical student records:

GU course 6U course
offering offering
GNP student BN offering *V
student

Similarly, the following sequences of DL/I calls retrieve

identical prerequisite records:

GU course

GU course offering
GNP prereq GN course *V
: prereq

The ABDL requests generated for such calls are no different
than for similar requests not specifying the V command code.
Again, the command-code flag is set by the translator to
allow the KC to identify the functionality of these
requests. The V command code may not be used with the last
SSA of the call, nor may it be used in an 55A that includes
occurrence qualification conditions, i.e., boolean

predicates following the segment name.

79

S R R

St e AT e e T T s T e T T T T T T T T T Tat et et I T T P
P PR A WIS WAL W AL L. L DG IR AR W WP P WAL T A vl S G YA WA P W ST PSPPI VP PSR Ipa

e 4 -y N T L————~ A ek il SRE Siadl B b il APl Shad el rul aded o 0 SO ot adil o il -

(3) Command Code F. Command code F provides a
means of stepping backwards under the parent segment type
that has been established as the current position within the
database. As such, it is only specified when pertorming a
GN, or GNP, DL/I GET call. As far as the KMS translator is
concerned, there is no difference between such a call and a
normal GN, or GNP. The translator generates the same series
of ABDL requests in both cases. However, it does set a
command-code flag that allows the KC to identify the
functionality of these requests. An example using command
code F is as follows, where we assume that the current

position within the database has been established by one of

the following sequences of DL/I calls:

GU course GU course
offering GNF offering
GNP student

Then, corresponding subsequent calls that may be made by the

user, specifying command code F, are as follows:
GNF teacher *F GNF prereq #*F
Command code F is disregarded if 1t 1s wused at the root

segment level (i.e., the root has no parent to step

backwards under), or with a DL/I GU call.

78

. . . e e e Lt
N T .t - - . N LR " P B . - P LRSI Y
B k8 e s e e i e s e B o B Bt e oa el ataec et alm oAt AL A Al LT A Ll e e M e el

"“’J
ae
.- — kA

Al

A

Notice that it is necessary for the user to build one

segment for each SSA of the call, i.e., one segment for each
segment type to be inserted. The series of ABDL requests

generated for such a call is as follows:

[INSERT ({TEMPLATE, COURSE>,
<CNUM, Cs69>,
<CTITLE, Zz>,
<DESCRIPN, Zz>)]

[INSERT ({TEMPLATE, OFFERING»>,
<CNUM, Csb69>,
<DATE, 85043@>,
<LOCATION, Monterey>,
<FORMAT, 2z3) 1

L INSERT (<TEMPLATE, TEACHER>,
<CNUM, Csé9>,
<DATE, 8350430>,

<TNUM, 12345,
<TNAME, Hsiao>) 13

One ABDL INSERT is generated for each SSA in the DL/I ISRT.
Notice that no ABDL RETRIEVE requests are generated, since
by definition, the sequence—field values have to be input by
the wuser when building each new segment. These sequence-—
field values are saved by the KMS in 1local variables, so
that they may be carried along, from segment to segment, as
the translator successively generates each ABDL INSERT
request. Also notice that three attribute values, not
entered by the user when building the segments, have been

defaulted to the value "Zz".

77

LI

I NAE I A Ak Sl S I A Sl et il At Sl Bt i

The only difference between these requests

would be generated

TR TR R T TR —m—m—w— L ouai aan ¢ T

without

and those that

specifying command code D, is

that the target lists for those SSAs specifying command code

D include all the attributes of the segment type,
merely the sequence—-field attribute.

specifying command code D are to be returned to

(2)

ISRT operations

specified in the last SSA of the ISRT

Path Insertion

insert

instead of

Those segment types

the user.

(Command Code Normal.

D).

data only for segment type

call. Clearly, the

parent and grandparent segments for such a segment type have

to already exist within the database. With the
specification of command code D in the DL/I ISRT, multiple
segments may be inserted to the database in a single call.

However ,

an appropriate path that

structure of the

the hierarchical schema.

inserted;
now exists;
c.de D specification

the DL/I ISKT.

database,

its child may be inserted next,

and similarly for all other GSSAs.

the segment types to be inserted still have to form

is consistent with the 1logical

i.e., the structure defined by

Therefore, a parent segment is

since its parent

The command

is required only in the first S5S5A of

An example of such a call is as follows:

build (cnum) : ('cs69)
build (date, location) : (B8S2430, 'monteirey’)
build (tnum, tname) : (1234, ‘'hsiao’)
isrt course #D
offering
teacher

PR R R S . WO L PRI S ST S

76

......
P S AT T P A Y

Al A Bl i AiC A I A Rt S A AT TR TR By T TR > v M S A AL Sl M TR AP G A A A U atl a0 o

asterisk, followed by the appropriate character, immediately
after the segment name in the SSA.

(1) Path Retrieval (Command Code D). Normal
BET operations retrieve data only for the segment type
specitied in the last SSA of the DL/I call. When command
code D is included in an &8SA, in connection with a GET
operation, the effect is to retrieve data for the segment
type specified in that SSA. In general, the D command code
ma§ be specified at some levels and not at others. The
effect is to retrieve just the indicated segments. Of
course, it is not necessary to specify the D command code in

the final SSA, since this segment is retrieved by

definition. An example of such a call is as follows:

GU course *D
offering
student

The series of ABDL requests generated for such a call is as

follows:

I RETRIEVE (TEMPLATE = COURSE)
(CNUM, CTITLE, DESCRIPN) BY CNUM]

[RETRIEVE ((TEMPLATE = OFFERING) and
(CNUM = ##%%))
(DATE) BY DATE 1

L RETRIEVE ((TEMPLATE = STUDENT) and
(CNUM = »#%%#) and
(DATE = #%%#%%))
(SNUM, SNAME, GRADE) BY SNUM 1]

75

R L I N
» . - PP R S . .o .

. - LT LT, ST
PR P VP P P i P SOOI Sl "o B Vo O n i S g WY T SR w R PC ST ST Sy A at at . ot o

the ssa rule, which also is now fully satisfied. Then,

control returns to the dml_statement rule, and the following

SSL is invoked:

dml_statement: J ssa
{

concat all attrs to last RETRIEVE req
concat ") BY ‘seq-fld’ 1" to last req

We now access the schema, again via the curr_seg_ptr, and
obiain all the attributes for the COURSE segment, and
concatenate them to the abdl_str. O0f course, they are
separated by commas. Next we concatenate ") BY " to the
abdl_str. Then we access our only tgt_list item (where we
previously stored the sequence field of the COURSE segment),
and concatenate "CNUM 1" to the abdl_str.

Now, the dml_statement is fully satisfied and
control returns to the start statement that called it. The
parsing and translation processes are now complete.

g. Segment Search Argument Command Caodes

A segment search argument (55A) may optionally

include a command code. Command codes are special codes

which allow variations to the basic DL/I calls. Each

command code is represented by a single alphabetic

character. Command codes are specified by writing an
74

N T e e e A T e e e T e T TN e
-t et e e L NS -

P I
o st . o

~ a7 ¥ T w = i T 5=

The curr_seg_ptr has previously been set to the COURSE

; segment , which is the root of our example database.
Therefore, we concatenate "TEMPLATE = COURSE" to the
abdl _str.

Now control returns to the seg_srch_arg rule,

and the following SSL is invoked:

seg_srch_arg: dli_opefator segment_name L G

concat ") " to abdl_str

E K
dli_operator E K

We simply concatenate ") " to the abdl_str, and then the

seqg_srch_arg rule continues, by calling the E rule. The

E rule searches for a GOTO statement in the input. Since no

GOTO statement exists in this DL/I call, the empty portion

of the € rule is matched, satisfying the E rule. Control

returns to the seg_srch_arg rule, which then calls the

) K rule. The kK rule searches for a dli_op in the input,
i.e., the reserved word DLET or REFL. Since no such
operator exists in this DL/I call, the empty portion of the

! K rule is matched, satisfying the K rule.

Next, control reverts to the seg_srch_arg rule,

. which is now fully satisfied. Therefore, control returns to

o . - ISt S R
'... . . - PO R .. N . - R PRE . .
..;-1.~*.\.\.1..--~'-.'3.-.x~ LA L L T S IS B S G L-L,_;i

ha e A e B S i e SO ST M e e ol il el Sl el Sl Jand i St Jenth Jumn bunigh oy P Jaar st —— —— Adinie Bade SdeBL i T sev S S A ¥

we allocate and initialize the abdl_str to be used to
-accumul ate the ABDL request, and the first tgt_list item to
hold the sequence-field attribute to be retrieved. We then
copy "L RETRIEVE (" to the abdl_str. We also access the
schema, via the curr_seg_ptr set by valid_parent(), and
obtain the segment sequence field and its maximum length,
which 1is then stored in the tgt_list item just allocated.
Firnally, we save the value of the segment name in a 1local
va}iable for later use. |

We now continue with the seq_srch_arg rule,
which calls the L rule. The L rule searches for a command
code token in the input. Since no command code exists in
this DL/I call, the empty portion of the L rule is matched,
satisfying the L rule. Control reverts to the seg_srch_arg
rule, which then calls the G rule. The G rule searches for
a segment occurrence qualification (a boolean predicate) in
the input. Since nao such expression exists in this DL/I
call, the empty portion of the G rule is matched, satisfying
the 6 rule, and the following SSL is invoked:

G: empty

T .

if (curr_seg_ptr = the root of the db)
concat "TEMPLATE = ‘segment_name’'" to abdl_str
end_if

3
H LLPAR boolean RPAR

SR e Y '.f

‘—V"'v

IR ——m————— R T T

Next, even though the seg_srch_arg rule is not
completely satisfied, we need to perform some translation.

The following SSL is invoked, before the L rule is called:

seg_srch_arg:
dli_operator segment_name
<
seqg_ptr = the root segment of the db
if (' valid_parent{(seqg_ptr, seg, curr_seg_ptr))

print ("Error - segment_name does not exist®)
perform yyerraor ()
return

end_if

if (operator_flag != ISRT)

alloc and init the abdl_str and tgt_list item

copy "L RETRIEVE (" +to the abdl_str

copy segment seq_fld and length to tgt_list
end_if

save segment_name for later use

3\
5

L 6 E K
i dli_operator E K
We set a pointer to the root of the database, which is then
passed as an argument to the valid_parent() function. The
valid_parent () function traverses the hierarchical schema to
determine whether a segment type with the given segment_name
exists, and returns true, along with a pointer to that
segment type 1in the hierarchical schema (curr_seg_ptr), if
found. Otherwise, valid_parent () returns false, in which
case an error message is printed, an error routine is
called, and then we simply return from the mapping process.
Therefore, since COURSE is a valid segment name, we

continue. The operator_flag has already been set to GU, so

71

dml_statement: J ssa

J: empty
i H

H: IDENTIFIER
{ VALUE

ssa: seg_srch_arg

i ssa seg_srch_arg

seg_srch_arg: .
dli_operator segment_name L G E K
{ dli_operator E K

segment_name: IDENTIFIER

L empty

ASTERISK N

empty
LFAR boolean RPAR

@

m

empty
GOTO H
NFGOTD H

empty
dli_op

e

Figure 17. The KMS dml_statement Grammar.

calls the seg_srch_arg rule, which then calls the
dli_operator rule. The dli_operator rule (nat shown in
Figure 17) recognizes the GU token of the DL/I call, sets
the operator_flag to signify a 06U operation has been
discovered, and returns control to the seg_srch_arg rule.
The seg_srch_arg rule then calls the segment_name rule which
recognizes the IDENTIFIER token (i.e., course) in the DL/I

call and returns control to the seq_srch_arg rule.

70

- . SO . DL
T T S T S R S T Y
DI W S ST THIT WL U TN W Wl PN VK WK P N SN WK N W W WA W W SN Wiy g Wy wy o

w e e

P AP AR A A) T A TR A B it ey st S S Pl A A il N AN A i Dt S M AR A P L shaary It A RS A “‘j

The relevant grammar is shown in Figure 17. The source DL/I

call to be utilized for our example is the following:

GU course

The ABDL request generated in response to such a DL/I call

is as follows:

[RETRIEVE (TEMPLATE = COURSE)
(CNUM, CTITLE, DESCRIFPN) BY CNUM 1]

To begin our discussion, let us first
synchronize the reader. At the beginning of the mapping
process, the parse descends the grammar hierarchy searching
for appropriate tokens in the input that may satisfy one of
the grammar rules. Therefore, the parser descends through
the ddl_statement rules (data definition language). After
finding no matching tokens for those rules, the parser
eventually descends to the dml_statement rule (data
manipulation language).

First, when the dml_statement rule is called, it
immediately calls the J rule. The J rule searches for a
label in the input. Since no label exists 1in this DL/I

call, the empfy portion of the J rule is matched, satistying

the J rule. Control reverts to the dml_statement rule,

which then immediately calls the ssa rule. The ssa rule

69

. el - . s P S S
S T TR T S P T S S PR S S P L P S ST S TR S
DR S S AR A PR D A . . P A T IR SR I

L a

AR . . A - _.'.'\'_‘j
N . PR . Y LR < v L . e . - et
NS N DA RIS B BT P AP S b S A . IR S A UPE TPEPAT Gl SR ST Jo¥ Tl Syl WL Yol S

LGNS B A A Al M gl B i | i A S AR S AL ARILAAd At sl ol s dh al el Stk SN SENERSEE adl Sk N i ol Y

Although the sequence field of the OFFERING segment has been
specified in its S5A, the translator does not recognize this
fact. Therefore, the RETRIEVE request for the OFFERING
segment is mechanically generated, in spite of the fact that
we are given the value that we subsequently retrieve when

executing this request. This RETRIEVE returns only one

date, in this case, 850430. No RETRIEVE request is
t generated for the TEACHER ‘segment. In general, no RETRIEVE

reﬁuest is generated for the last S5A in the DL/I1I ISRT.
This 1is because the last 55A represents the segment to be

inserted and, by definition, the user gives us the
%! sequence—field value when building the new segment. The KMS
translator did not have to insert any default values, as all
ﬁ TEACHER attributes have been listed by the user in building
the new segment.

f. The Mapping Processes: An Example

In this subsection we present an 1illustrative
example of the KMS mapping processes (i.e., parsing and
translation) for a simple DL/I GU call. We begin by showing

the grammar for the dml_statement portion of the KMS5. We

then step through the grammar and demonstrate appropriate
portions of our design in system specification language

(55L). We only show those partions of the design that are

o
N T TV T

relevant to the example, i.e., those that would actually be

executed. The entire KMS design is shown in Appendix C.

J 'T‘b‘t
— St

68

- o CoeT - - PR S . PN
S E T AT T A e N e T e e T e e L T e e T e T et et R S e T A et e e N e e e j
SRS BV AN A SRRV LI VS GPYLNL Sl Sy YR W YN Bl et e lom S A n "8 » "8 e s s 1" 8 . m a’a’ase’s'a’aa'a'a"aa"a"a

(i an
AT
e’y

i)
IR
AR
efetala

A b VVWYrrrr Lon ae ™
P A P e .
v e, f . > o e e

TR ——

T —— G gy SabiSn Snas Zhas Sge Sise Zhaa Shae Jhege Jhese atein it Miuse 2 T—— " " -

control facilities such as the SENSEG (sensitive segment)
specification, the program communication block (PCB), or the
PROCOPT (processing options) specification.

As mentioned in Chapter 11, our interface data
structures have been constructed to facilitate future use by
multiple users. This would allow the LDBR concept to be
supported by incorporating the hierarchical database schemas
into the user information structure (user_info shown 1in

Fiéure 8). These schemas would be logically external and

‘user—-specific with respect to the entire 1list of physical

database schemas that are still global.
2. BSegment Insertion Based on Current Position

A normal DL/I ISRT call specifies the complete
hierarchical path from the root segment to the segment type
being inserted. Although not included 1in our 1anguage
interface, 1t is possible to omit the specification of the
complete hierarchical path and to quote just the type of the
new segment. In such a case, the current position within
the database, that has been established during the previous
call to the KC, is used to determine where the new segment
is inserted.

This option, although not planned for during the
design, is supported by the KMS parser/translator. However,
as in the case of the GN or GNP, the specification of an
incomplete hierarchical path makes it necessary to

semantically analyze the ISRT S5As and the previous DL/I

82

AN A S |

e e S NP .- bl S A Sl A gl R M At S e S S i D DEAERA A Y St Bt VAN eSS Sall el Sl Al A Sl dadl

call. We feel the programming effort involved to go back

and provide such a facility, although not complex, is time-—

- consuming for the benefits to be derived.

o 3. Additional SSA Command Codes

E The language interface supports the use of command
codes D, F and V, as described earlier. These command codes
3 -are probably the most useful of the set of available DL/I
t command codes. For details of the remaining command codes
(L, N, @, U), see [Ref. 9: pp. 4.1-4.31.

The remaining command codes have not been

implemented because we feel the effort involved to be too

W'.‘. Pt A

time—-consuming to justify their benefits. Almost any DL/I

operation that may be accomplished using these command codes

Ty v Y v
AR

ﬁ) may be done in an alternate fashion in our 1language

interface, as it 1is presently implemented. A possible

Wt

exception to this is command code &, which concerns a data

security concept that 1is beyond the scope of our present

T
. .t

implementation.

0
2]

T I T T T T I L I A AR S T S) .

.- . S e e e e NS PUCIRE I . o=
..... s AT T ey T LT e T T e e T e T - LT T TR e e T T T T e T B T T e e T LT T e e T T T
PR B P ne B B e Sons PR N oo B P S Ao 8 o B Soa B S st S P R P T AU R R I W AT W T P B B S MW S i SR

T T 2T RTe T, TE®TW R TR YT T

V. THE KERNEL CONTROLLER

The Kernel Controller (KC) is the third module in the

DL/I language interface and is called by the 1anguage

interface layer (LIL) when a new database is being created
F; A or when an existing database 1is being manipulated. In
P either case, the LIL first‘calls the Kernel Mapping System
(KHS) which performs the necessary DL/I-to—-ABDL

b translations. The KC is then called to perform the task of

‘ controlling the submission of the ABDL transaction(s) to the
[multi-backend database system (MBDS) for processing. I+ the

transaction involves inserting, deleting or updating

Li information in an existing database, control is returned to
' the LIL after MBDS processes the transaction. 1+ the
y transaction involves a retrieval request (i.e., 0GU, GN,
’ GNF), the KC sends the translated ABDL request to MRDS,

receives the results back from MBDS, loads the results into

the appropriate file buffer, and calls the Kernel Formatting

System (KFS) to format and display the results to the user.
The other retrieval types (i.e., GHU, GHN, GHNF) are
processed similarly, but the KFS 1is not called. These
retrievals are wsed only to establish a currency position

%“ within the hierarchical database.

84

-y
b

¥ vvr'v:vn "
’ ’-‘ S . [
oLt T T [',

i)

Ol A .
PR
ottt e Nl

ra

These ideas may be best

following example.

DL/1I request:

illustrated by

Suppose

GU course {(ctitle = "mlds’)
offering {(date = 850430)
student (grade = ‘a’)

This request is translated'to the following series of ABDL
rehuests:
L RETRIEVE ((TEMPLATE = COURSE) and
(CTITLE = Mlds))
(CNUM) RY CNUM 1
L RETRIEVE ((TEMPLATE = OFFERING) and
(CNUM = %*¥*x%*) and
(DATE = 835043@))
(DATE) BY DATE 1]
£ RETRIEVE ((TEMPLATE = STUDENT) and
(CNUM = . %#*%#) and
(DATE = »*¥%%%) and
(GRADE = A))
(SNUM, SNAME, GRADE) BY SNUM 1
The KC is now called to control the transmission of these
requests to MBDS for execution. Generally, this is
accomplished by forwarding the +first RETRIEVE request to

examining

the

the user issues the following

MBDS. Results are gathered and placed in a file buffer.
Notice that the next RETRIEVE is not fully—formed.
Therefore, it is necessary to replace the asterisks with a

value that is extracted from the

first RETRIEVE

request ‘s

file buffer. In this example, the value is a course number

i (CNUM). Again, the request is forwarded to MBDS, and
;; appropriate results are obtained. The last RETRIEVE request
5 is alsa not fully—-formed. In this case, attribute values
- from both the first and second RETRIEVE requests are

- utilized to complete the ABDL request. Thus, a value is
- pulled from the +file buffer associated with the second
E request, and the same CNUM'used to build the second request
- is‘ again used to form the final request. The fact that a
new value is not pulled from the first request’'s file buffer
illustrates currency within the hierarchical database.
s Specifically, the values that are used in subsequent
iy RETRIEVE requests have +to be consistent with those values
used in earlier requests. This ensures that the path used
to retrieve values from the database is consistent with
previous retrievals and the database hierarchy.

- The procedures that make up the interface to the kDS
{i.e., MEBDS) are contained in the test interface (TI) of

MEBDS. To fully integrate the KC with the KDS, the KC calls

procedures which are defined in the TI. Due to upcoming

hardware changes in MBDS, we decided not to test the KC on-
N line with the TI. Our solution to this problem has been to
;' design the system exactly as if it were interfacing with the
:i TI. However, for each call to a TI procedure, we have
EE created a software stub that performs the same functions as
;' the actual TI procedure. The reader should realize that all

86

interactions with the TI procedures described in the KC are

actually made with these software stubs, rather than with
the on-line Tl procedures.

In this chapter we discuss the processes performed by
the KC. This discussion is in two parts. First, we examine
the data structures relevant to the KC, followed by an
examination of the functions and procedures found in the KC.
Appendix D contains the deéign of our KC implementation,

written in a system specification language (SSL).

A. THE KC DATA STRUCTURES

In this section we review some of the data structures
discussed in Chapter II, focusing on those structures that
are accessed and used by the KC. The first data structure
used by the kC is the dli_info record shown in #igure 18.
The KC makes use of only two fields in this record. The
first, curr_sit_pos, is a pointer to an §Sit_status_info
record, shown in Figure 19. This record indicates to the kC
at what location in the list of Sit_info nodes execution is
to begin. The second field of interest, buff_count, is an
integer used to maintain control of the file buffers
associated with the results of each RETRIEVE request. For
instance,; the results associated with the +first RETRIEVE
request of our last example are placed in a file buffer with

an extension of "@". The buff_count is incremented by one,

87

Latiad Atk b a4

LA aath Sath Jov g Meii Radh gl Judl St Jecth Bauomen)

L J A Wt T

T—T——T

struct dli_info

{
struct curr_db_info
struct file_info
struct tran_info
struct ddl_info
int
int
int
union kms_info
struct Sit_info
struct Sit_info
struct hrec_node

. struct hrec_node

struct Sit_status_info
struct Sit_status_info
int

¥

Figure 18.

and the results

placed in a file buffer with an extension of

As noted above,

associated

with

the Sit_status_info record indicates

the

il N bl i A - e Ty

curr_db;

files

dli_tran;

#ddl _+iles;
answer ;
operation;
error;
kms_datas
#git_list;
*kms_sit;
*saved_seg_ptr;
*saved_seq_ptr2;
#fst_sit_pos;
#curr_sit_pos;
buff_count;

The dli_info Data Structure.

second request are
ll1ll-

to

the KC where execution of a group of ABDL requests is to
begin. (See Figure 19.) The first field, req_pos, 1is a
pointer to an Sit_info record, which holds the information
struct Sit_status_info
{
struct Sit_info *req_pos;
struct Sit_status_info *next;
int status;s;
>
Figure 19. The Sit_status_info Data Structure.
88

required by the KC to properly control the execution of the

request. The +following field, next, is a pointer to the
next Sit_status_info node that the KC is to process. This
field may be NULL if no other requests are to be processed.
The last field, status, is an integer which indicates how
much of the current request overlaps the previous request.

For example, if the DL/I request shown in our first example
is followed by:

-

6N offering (date = 858430)
student (grade = ‘'a’)

then the status field would indicate that this request
overlaps our first request at the OFFERING and STUDENT
segments. There may also be no overlap between requests.
For instance, if our example database (see Figure 3)
contained GRADUATE and UNDERGRADUATE segments below the

STUDENT segment, and if our first example is followed by:
GN graduate (gname = °'jones’)

then there is no overlap.

The Sit_info record, shown in Figure 28, contains the
information needed by the KC tao process a DL/I request. The
tirst two fields, prev and next, are pointers to the

previous and next 5it_info nodes, respectively, and are used

by the KC to obtain information about the previous and next

89

‘a4 & u'a &4 A& a4 . & 4 s & .a a s A .4_‘.24,_4:4.'_._.;44_‘_.;,‘;_.MMA_‘_‘J

e

Sit_i

- Ml vl S N E e PR ahd s ik st il andl adii-aNhcadii ulniralii Praiiiee et e Pl dhat i diaie R et SOt Al

nfo nodes. The third field, parent, is also a pointer

to an Sit_info node. However, in this case the pointer is

to the parent node. Information about the parent node 1is

requi

red by the delete and special-retrieve procedures for

proper execution. The next two fields, child and sibling,

are

also

pointers to child and sibling Sit_info nodes. They are

used to process deletes and special-retrieves. The

reader should note that éhese fields effectively represent

thé hierarchical form of the database, although the nodes

are

physically stored as a linearly-linked list. The

follaowing field, loop, is also a pointer to an Sit_info

node,

but is used to indicate where the KC should loop when

struct Sit_info

{
struct Sit_info *prevs;
struct Sit_info *next;
struct Sit_info *parent;
struct Sit_info #child;
struct Sit_info #sibling;
struct Sit_info *1oop;
struct Sit_info *nf_loop;
char *abdl _req;
char *templ ate;
int operation;
int cmd_code;
int or;
char seg_namelRNLength + 11;
int BOR;
int EOR;

struct hie_file_info #result_file;

()

Figure 20. The Sit_info Data Structure.

el

i, Py P - - edmadod ol ad abal ok obod A ‘-Aansi;ll-‘l‘-J

CHRaih Sagh Janth Joete Buce itusy Sade Mie Jies iete s 2 T N—————— " — o otk i AN AR Sl iui aout Mok Bd Anivi SReh JIvh S Sren st A et aee ?

a GOTO is encountered in the DL/I request. For example,

suppose the user issues the foliowing DL/1 request:

GU course {(ctitle = ‘mlds”’)
offering (date = 85@430)
XX 6N student {(grade = ‘a’)

GOTO xx

This request retrieves all students receiving a grade of "A"
in, the course entitled "mlds", that is offered on 850430.
We have seen that without the 6GOTO, this request is
translated to three ABDL RETRIEVE requests. Since we desire
to retrieve all STUDENT segments for the above request, it .
is necessary to provide a pointer to the Sit_info node that
we may loop on. In this case, it is the GSit_info node
associated witﬁ the retrieval of the STUDENT segments, i.e.,
the last RETRIEVE shown in our first example.

The next two fields, abdl_req and template, are bointers
to character strings. The first, abdl_req, holds the ABDL
request previously parsed by the KMS. This array may
contain place-holding asterisks 1f the request is not
fully—formed. The template field is used to build a fully-
formed ARDL request. Thus, it never contains asterisks.‘
These have been substituted with appropriate values from the
file buffers. The reader may ask why the fully—formed AEDL
request is not built on top of the abdl_req field? The

problem with this is that abdl_req may be used in subsequent

91

. e e T e T T e e e T e e s et e e T s . e s T - ., e Lt e e j
[P C PN S SPRLAPSE. WSN NPN. UL . NN WA, DV YPURE SO R W NP DI RN W W Y s . oA A SRS SN PSP AN RS NS I SR I SRR . T S S SN S W S S 1

B RN D TN

-~ -

ABDL actions with different values being substituted for the
asterisks with each new action. If the place—-holding
asterisks are destroyed, then there is no way to determine

where to place the new values in the request. The following

field, operation, is an integer indicating the DL/I.

operation associated with this Sit_info node, i.e., 6U, GN,
GNP, DLET, ISRT, GHU, GHN, GHNP, SPECRET. (Here, we use a
SPECRET operation cade to refer to GN and GNF requests with
no SSAs.) The KC uses this information to invoke the
correct procedure to execute the ABDL equivalents of the
DL/I request. The next field, cmd_code, is a flag set by
the KMS to indicate the presence of a particular SSA command
code in the DL/I request.

The following field, or, is a flag that indicates if an
"or" is present in an ABDL request. For example, the KMS
sets this field to TRUE as a result of the "or" between the

dates in the JFFERING SSA of the following DL/I request:

GU course
offering f{date = 840430 or date = 85043@)

The KC needs to know this information when it builds a

request for subsequent executior. If the above request is

issued, its translation is as follows:

i, L W Py - G PP I hd DRLIPPLI Y P . . 2ol N o P WA W iy Ty D, P PSP

L RETRIEVE (TEMPLATE = COURSE)
(CNUM) BY CNuUM 3]

[RETRIEVE (((TEMPLATE = OFFERING) and
(CNUM = #**%*%) and
(DATE = B840430))
or ((TEMPLATE = OFFERING) and
(CNUM = *x##) and
(DATE = 858438)))
(DATE, LOCATION, FORMAT) BY DATE 1]

Because of the "or", the same course number has to be used
in both instances of the asterisks in the second RETRIEVE.
The or field is used to signal the KC when this occurs.

The next +field, seg_name, holds the segment name
specified in the SSA of the DL/I request. The following two
fields, BOR and EOR, serve as flags indicating the beginning
and end of a request. If we use our last example, BOR for
the first RETRIEVE request is set to TRUE, while EOR for the
second (last) RETRIEVE is set to TRUE. These values are
used to control the execution of ABDL requests. For
instance, the KC may continue to execute RETRIEVEs until it
detects a TRUE value in the EOR field.

The last Ffield, result file, is a pointer to the
hie_file_info record, shown 1in Figure 21. This record
stores information about file buffers containing the results
obtained for each RETRIEVE request. The first field, buf+,
contains the file name and file id. This information is

required so that the appropriate files may be written to,

read +from and appended to, as necessary. The second field,

93

struct hie_+file_info

r
AY

struct file_info buf+f;

int counts

int status;

int buff_locs

char #curr_buff_val;

)

Figure 21. The hie_file_info Data Structure.

count, is simply an integer representing the number of
results in the file buffer. The next field, status, serves
as a flag so that a file buffer is opened under the correct
status. The fourth field, buff_loc, indicates the KC's
location in the file buffer. For instance, after the first
value 1is pulled from a file buffer, this field indicates
that the KC's position is now at the beginning of the second
result. The 1last field is a pointer to a character string
and holds the last result value pulled from the file buffer.
This field 1is used to maintain a currency position in the
database hierarchy. Once a value is obtained from the file
buffer, it 1is difficult to reset the file pointer to the
location where the value has just been obtained. It 1is
easier to simply store the value so that it may be used in

the building of subsequent RETRIEVE requests.

94

PO T P SR P PSP - r-.L--_L--_L-A_‘_‘A,-;'JL.-_‘.L_L_.AA'.Lj

B. FUNCTIONS AND PROCEDURES

The KC makes use of a number of different functions and
procedures to manage the transmission of the translated DL/I
requests (i.e., ABDL requests) to the KDS. Not all of these
functions and procedures are discussed in detail. Instead,
we provide the reader with an overview of how the KC
controls the submission of the ABDL requests to MBDS.

1. TIhe Kernel Controller

The dli_kc procedure is called whenever the LIL has
an ABDL transaction for the KC to process. This procedure
provides the master control over all other procedures used
in the KC. The first po;tion of this procedure initializes
global pointers that are used throughout the KC.
Specifically, kc_curr_pos 1is set to point to the first
Sit_info node that is to be processed by the KC, and kc_ptr
is set to the address of the 1i_dli structure for a
particular user. The remainder of this procedure is a case
statement that calls different procedures based upon the
type of ABDL trancaction being processed. If a new databace
1s being created, the load_tables procedure 15 called. I¢
the tramsaction 1s of any other type, then requests_hand.er
is called. I+ the transaction 1s none of the atcve, trier e
1S am error and an error message 1S generated Wi SRR

returned to the LIL.

THE DESIGN AND IMPLEMENTATION OF A HIERARCHICAL

IHTERF”CE FOR THE MULTI-LINGUAL DATABASE SYSTEM(U)
ARVAL POSTGRADUATE SCHOOL MONTEREY CRA

UNCLﬂSSIFIED T P BENSON ET AL. JUN 85 F/G 972

S !

I O O -

. " Lot el SR A S S A

w RO R TR R Y ICACANINDA RSN IEL N NECREL A AN
N . y
>
Al
‘
" l O B §28 ||I|2.5
.- . e 52 =
X — 5 6 -~
g g

122

="y
2= s s

- MICROCOPY RESOLUTION TEST CHART
o NATIONAL BUREAU OF STANDARDS 1963 ~ &

—

.

——

rr
13

N
a

I
I

. -
)

* et " ~

EEM S B S AUt i Y Y o - LEASIM S Secih et e et it i et el sede 4 T RAACSAADSA & Sait sy 3

2. Creating a New Database
The creation of a new database is the least
difficult transaction that the KC handles. The load_tables
procedure is called, which performs two functions. First,
the test interface (TI). dbl_template procedure is called.
This procedure is used to load the database—-template file
created by the KMS. Next, the TI dbl_dir_tbls procedure is
called. This procedure loads the database—-descriptor file.
Thése two files represent the attribute-based metadata that
is loaded into the kDS, i.e., MBDS. After execution of
these two procedures, control returns to the LIL.
3. The GU, QN, GNP, ISRT and REPL Reguests
The GU, GN, GNF, ISRT and REPL requests are all
handled in a similar manner. For any one of these types of
operations, the GU_proc procedure is called. The follaowing
examples illustrate the logic used in this procedure which

controls the processing of these types of requests. Suppose

the following DL/1 request is issued by the user:

GU course
offering (date
student (grade

85@43@)
‘a’)

The KMS translates this DL/I request into the following

three ABDL RETRIEVE requests:

96

B T R T S S S W
- A R IR SN Mt St SN SR S S S S B S AL PR S S PR I ST ST ST BN TSR Tt S s TR
I o RPN, VR PR WL WP WA WL 1 IR SPL ORI WU Y WL R R DR A R AP R N YRR Y

. LI A TR VA U N VR T Y A L L PSR U ST SN N PR Wl TR S R T

- - DIAFCILIC I ST N SRS S
PR TY R WE DR WO PGS WL WSS, T,

RS
hY

~

P

4

B e Juen e

[RETRIEVE (TEMPLATE = COURSE)
(CNUM) BY CNUM]

L RETRIEVE ((TEMPLATE = OFFERING) and
(CNUM = »#%%) and
(DATE = 850430))
(DATE) BY DATE 1

[RETRIEVE ((TEMPLATE = STUDENT) and
(CNUM = ##%%) and '
(DATE = ###*#%#) and
(GRADE = A))
(SNUM, SNAME, GRADE) BY SNUM 1

-

Also suppose this is the first request the user issues
against the database. The kc_curr_pos is set to point to
the first ABDL RETRIEVE request shown above. In addition,
the fst_sit_pos of dli_info indirectly points to the first
RETRIEVE. Therefore, the first task GU_proc accomplishes is
to determine 1if kc_curr_pos and fst_sit_pos point to the
same Sit_info node. If they do, then the KC knows that this
is the first request issued by the user, and that the first
RETRIEVE request is fully—-formed (the case where the two
fields are not the same is examined in our next examplel.
Since the first RETRIEVE request is complete, it may
be immediately forwarded to the KDS for execution. This is
accomplished by calling dli_execute. This procedure uses
two TI procedures and the dli_chk_requests_left procedure.
In general, dli_execute sends the ABDL request tao the KDS
and waits for the last response to be returned. Results for

a given request are placed in a unique file buffer

97

YA S S R A A T L P
LR TR WAL NP N o T T P P P SR S IR P PP IR WP

L AFL A SR P

Al
DU R
a A

0

saatats e

]

associated with each Sit_info node. The file_results
procedﬁre controls this process.

After the last response is returned, control is
returned to GU_proc. Now, GU_proc bhas to process the
remaining RETRIEVE requests until the end-of-request flag is
detected. Therefore, kc_curr_pos now points to
kc_curr_pos->next, which is in this case, the second
RETRIEVE. However, this RETRIEVE request may not be
fo}warded to the KDS because it is incomplete. Hence, the
build_request procedure is called to complete the request.
In this instance, a course number (CNUM) is substituted +for
the place-holding asterisks. This value is obtained from
the first RETRIEVE's file buffer. Specifically, this value
is located in curr_buff_val of the +first RETRIEVE's
result_file. This RETRIEVE may now be forwarded to the KDS
for execution in the same fashion as the first RETRIEVE.

Finally, the 1last RETRIEVE request has to be
processed. Again kc_curr_pos is set to point to
kc_curr_pos->next, i.e., the last RETRIEVE. This RETRIEVE
request is also incomplete, so build_request is called to
complete the request. However, a value from both the +first
and second RETRIEVE's file buffer is used to complete the
request. We note that the same course number used to build
the second RETRIEVE is also used to build the last RETRIEVE.
This is because we have established a currency position

within the database that is related to the first value in

96

PO AN S Sk e LUl S LRI AUl st SRl el aee

.
A
)
!
.'

the first RETRIEVE s vile buffer and the first value in the
second RETRIEVE's file buffer. As before, this request is

forwarded to the KDS for execution once it is fully—-formed.

' RS,

1+ results are returned, then dli_kfs is called +to

. display to the user the first STUDENT segment satisfying the

TcHEER. e s

request. If, on the other hand, results are not returnéd,

then the KC has to retract a level in the hierarchy, obtain
the next value from that level ‘s file buffer, and re-issue
the request to the KDS. In this example, the KC would
; retract to the level of the second RETRIEVE, pull the second

value from its file buffer, substitute this value for the

r

asterisks related to the date in the last request, and again
forward the request to the KDS.

Let ‘s look at an extreme instance where the KC is
unable to obtain any STUDENT segments for any of the values
in the second RETRIEVE 's file 'buffer. In this case, it
i would be necessary to retract all the way to the level of
the first RETRIEVE, pull its second value from the file
buffer, substitute it for the asterisks in the second
RETRIEVE, and re-issue the request to the KDS for execution.
This process continues until either a STUDENT segment is

returned, or the KC uses the last value in the first

RETRIEVE's +file buffer and no STUDENT segment is returned.

This would indicate that no STUDENT segments exist in the

database for this particular request.

v v wam—- e 7 8 v
A AL N

99

.. -

e R R R A S ., AR Bt S St e i o e MRS A |

Suppose now that the DL/I request we have just

discussed is followed by:

Yy 6N student (grade = ‘a’)
G60TO vy

The KMS translation of this DL/I request is as follows:

[RETRIEVE ((TEMPLATE = STUDENT) and
(CNUM = ###%) and
(DATE = %*###%#) and
(GRADE = A))
(SNUM, SNAME, GRADE) BY SNUM 1

This request is linked to the last RETRIEVE of the previous
example, and it is both a beginning—-of-request and an end-
of-request. The KC is again called with kc_curr_pos now
pointing to the above RETRIEVE. The KC recognizes this
request as a GN operation, therefore, GU_proc is called.
However, this time kc_curr_pos and fst_sit_pos do not point
to the same Sit_info node. Thus, this is not the Ffirst
request issued by the user. Therefore, subsequent action
taken by the KC is based on the status field in the
Sit_status_info record, set during the semantic analysis in
the KMS. If the status field is set to MATCHALL (indicating
S5A overlap between this, and the previous DL/I request),
then the KC determines if all values in the file buffer have

been returned. If they bhave, then 1t is necessary to

100

. N e e .o e
........ -
D LR KS LAIEN) AR S -

my et W,

Q‘ u--
A SAN

.......
o e .

et

retract to the next higher level and ¢try to re-issue the
request. However, if all values in the file buffer have not
been returned, then dli_kfs is called to display the next
value .in the file buffer. In our example, the status field
is set to MATCHALL. Thus, the actions described above are
taken.

However , now suppaose that our first example DL/I
request had been:

-

GU course
offering (date = 85043@)

followed by:
GN student (grade = "a’)

In this instance, the status field is set to MATCHPART
(indicating the S5SAs of this request are a continuation of
the previous DL/I request). The RETRIEVEs are identical.
However, the KC bhas to process and execute the RETRIEVE
request associated with "GN student..." before calling
dli_kfs. This 1is because this RETRIEVE has not been
executed, as it had been when the status field had been set
to MATCHALL.

Let’'s return to our first example where the DL/I

request:

101

Y% Sacans

A .
e et
LRI

——— TRy e Y W N N =

GU course

offering (date = 850431)
student (grade = ‘a’)
is followed by:
Yy GN student (grade = ‘a’)

GOTO vyy

There is a GOTO in the second DL/I request, which means that
the loop pointer is set to a value other than NULL. In this
example, the loop pointer both emanates and points to the
RETRIEVE associated with the "GN student..." request.
Therefore, the loop_handler procedure is called to control
the 1looping to this node and subsequent display of all
STUDENT segments satisfying the request. Al though our
example does not show it, the loop pointer may point to an
Sit_info node in the middle of a group of requests. In this
case, the loop_handler procedure processes all RETRIEVEs
from where the loop pointer points, to the end of the group
of requests. This 1is done until all results in the file
buffer pointed to by the loop pointer.have been used.

The reader may notice that we have not discussed the
other DL/1 request operations that are processed by the
GU_proc procedure. This is because the logic is the same
whether the operation is a GU, GN, GNP, ISRT or REFL. The

KC knows that it is receiving a linked-list of requests,

102

---------- P NN 8
........ o e e e . N R T
LL‘L&\.Q‘I—LL“LLL' PRI SR T SO T RN S R TP YL WAL o

LRI W S Wl S .

delimited by a beginning-of-request and an end-of-request.
Therefore, the logic in GU_proc is predicated on detecting
these flags and processing all requests in between, without
regard to the specific operation.
4. The GHU, GHN, and GHNP Reguests

The GHU, GHN, and GHNP requests are bandled in a
similar manner. The 1logic 1is exactly the same as that
described in tie last subsection for GU_proc. However ,
instead of calling dli_kfs to display a segment when the
end—of-request is detected, control is returned to dli_kc
for further processing of any additional requests. The
intent of these operations 1is to establish a currency
position within the database. This is done by moving the
file-buffer pointer to the correct position within the
buffer. Therefore, the procedure that processes these
operations (i.e., GHU_proc) moves this pointer, instead of
calling dli_kfs.

5. The DLET and SPECRET Regquests

DLETs and SPECRETs (i.e., GN and GNP with no 5SAs)
are the most difficult operations for the KC to process.
The problem with handling these operations is that they
affect the entire database hierarchy as opposed to just a
linear path within the database. This idea 1is 1llustrated
by the following example. Suppose the user issues the

following DL/I request:

103

L2 - eI - e S Jnten A dran A st A e Jhan e A te A W e SAun Jovn A s Bres Sute 8 v AAmh s irat el B Rei gl A Ba S St s s e el Shate nase

GHU course (ctitle = ‘mlds’)
offering (date = 83043@)
DLET

This request first retrieves all course numbers for which
the course title is "mlds". This is followed by another
RETRIEVE request that gathers all dates for a course number
(retrieved above) and an offering date equal to 850430.
These RETRIEVEs are used to gather the results needed to
process the DLETs for this segment and all its children.
(In this case, the appropriate TEACHER and STUDENT
segments.) The KMS translation of this request is as

follows:

[RETRIEVE ((TEMFLATE = COURSE) and
(CTITLE = Mlds))
(CNUM) BY CNUM 1]

[RETRIEVE ((TEMPLATE = OFFERING) and
(CNUM = x#%%) and
(DATE = B8S0430))
(DATE) BY DATE 13

U DELETE ((TEMPLATE = OFFERING) and
(CNUM = #*x%%) and
(DATE = *#%%%%))]

[DELETE ((TEMFLATE = TEACHER) and
(CNUM = #%%%) and
(DATE = ##%#%%))]

[DELETE ((TEMPLATE = STUDENT) and

(CNUM = xx%x%x#) and
(DATE = #%%#x%))]

104

e et . IS
.......

w Ca R . N SCowTe . te . .. - ., cte T,
T R T IO I T i S0 S St Y S0 SEIP UL I P WA Py RIS P UIPE YGRSl S S Sy

The reader may easily discern that we are not only deleting
those recorcs for which the course name is "mlds" and the
offering date is 850430, but we are also deleting the
children of any records for which these conditions are true.
Our solution to this problem is the use of mutual recursion.
Generally, when the KC detects that a DELETE operation is to
be per formed it calls the Delete_proc procedure.
Delete_proc deletes records from the database until the
kc;curr_pos pointer becomes NULL. During processing,
Delete_proc determines if a node to be deleted has a child
node. I+ the node does, then delete_setup is' called. The
delete_setup ﬁrocedure then calls Delete_proc for all child
records associated with this parent record. I+ we 1look at
our example again, we see that the first DELETE node has a
child, which is the DELETE-TEACHER node. This in turn has a
sibling, which is the DELETE-STUDENT node. Therefore! it is
necessary to delete all TEACHER and STUDENT segments that
are children of the OFFERING segment. The deletion of these
child segments is continued until the parent node’'s file
buffer 1s exhausted. This 1is the file buffer o+ the
DELETE~-OFFERING node in our example.

The SFECRET operation works in a similar manner.
This operation 1is required when all the children of a
particular segment are also to be retrieved. Again, this
occurs during GN and GNP DL/I1 requests when no SSAs are

specified.

. L TS O T T T et
PRI W I SLAT Sl SRl VAT WD Ul Sl GL Wl A WL ThAl Sl Ly G o .

Vi. THE KERNEL FORMATTING SYSTEM (KFS)

The KFS is the fourth module in the DL/I 1language
interface, and is called by the Kernel Controller (KC) when
it is necessary to display results to the user. The
transformation of data into the appropriate format is a very
simple task for the DL/I language interface. Unlike most
other language interfaces, no change in format is required.
The form that the data is in when it is retrieved from MEDS
is the same form in which it is to be displayed to the user.
The t&ék of the KFS is reduced to simply printing out the
results obtained from the ABDL equivalents of the DL/I
requests. In this chapter, we discuss how the KC stores the
data that the KFS eventually displays, and how the KFS
outputs this data. Appendix E contains the design of the

FFS, written in a system specification language (55L).

A. THE KFS DATA STRUCTURE

The EFS utilizes just one of the data structures de+fined
in the larguage interface. The kts_hie_info record, shown
1n Figure 22, contains information needed by the KFS to
process the results. The first +field in this record,
response, contains the result from MEDS which is loaded by
the KC just prior to calling the KFS. The second field,

curr _paos, lets the KFS know where i1t is in the response

106

LIRS e o o St g

R S R S R) SPPY A

struct kfs_hie_info

{
char *response;
int curr_pos;
int res_len;

¥

Figure 22. The kfs_hie_info Data Structure.

buffer. This assists the KFS in maintaining the correct
orientation in the resbonse buffer. The 1last field,
reé_len, indicates the length of the response buffer. This
value is used as a halting condition. For instance, the KFS
continues to pull characters out of the response buffer

while the loop index is less than or equal to the res_len.

B. THE FILING OF DL/I RESULTS

The KC stores the results obtained from a DL/I request
by calling the file_results procedure. This procedure first
determines whether the response being returned by MBDS 1is
the 1initial response to a DL/I request. I+ it is the
initial response, then the result file is opened for writing
in the response. I+ the incoming response 1is not the
initial one, then the results file is opened for appending
the new response to older responses. The procedure reads in
the name of the first attribute and stores it in a variable,
in addition to storing i1t in the results +file. The
attribute value i1s then stored into the results file. A

while loop then handles the storing of the remaining

187

Py

JI‘.JCW.I...W-.

wu.d.n.Uqka
oanNt TN

Yyt

ey 1yt

panuliuocl *+2 JIuIld

PPN
STNPP T

L I¥AOYAS

oann|~1QQ

PRI

Fyn1DMIAS
oat TG

]

A
R SRS NN .

PREN

- - . " .
L WL PSS e

W

e

-y

23 gy e

NoINO Qo IV

panuTiuol thHz 3aNITy

R

Pyt

o w.........) ®

YT

IONDOMYLS
ozl T3

OaNI T Ng

M YyaDaYAs

S TP

b.a.L...Hv.»J..Cﬁ.

LstW)‘Jo.u M

NOVNN IQoNTJO0ND

e

MOYVO 3QoN TQVEQ

P

P e

..N‘sd‘&.wo - ..4.1.0 L4

2VOAMYAS
02 —9Q - YYN?

NPT TR W B DO L ey

. L Ta e e e

DLI - INFO
STRUCTVRE

I c.ur‘r..ou:s

o di-€ile

o di - ol i -ran

o di-ddlFiles

'.dLL-Oth\ﬂqur

. aLL - ort."é-tn;:\r\

o Adi_Vrror

.OL(_kwws..Juﬁt°\

° a((.- Kés-rlo.t‘\

I KQ_UL&{%

o diosetolist

o di_kms_sit

o Ai- Sawt.cL-Sg') - E'tv‘

o di- va'«‘{—-'*':ﬂ- F{rl’

. it_(‘gﬁ_s{,f;fos

° a(,L-CUF"-SL'{~ POS

o Al b€ _count

SEE PAGE 120
see PAGE 120
sEE PAE

2l

SEE PAGR

13

)

SEE PAGE
seg PRGE

see PAGE 1
g 18

s€e PAGE

SEE PRGE U

Figure <%. Continued

119

AN SR i St abvie

S A i At S ACT AR S A A A RS pal B¢ ST B gl B

PRI Ao el fad Al e odh e

bil 3vd 3>

S9JINONILG

er] aasn “H 3INSTY

bnslu..xufndisl

NP

2dh =) -me

NOINO
o3t~

.ﬁ. N TN &

YIS
oaNI TIITN

2 urL =2\ —JsM

113

su.L !3 l.dJ.J TaADSH

."'.'_'.“.-.‘_'.':-'_ IS
St btac ety

Tt T TN T e et
ISR B S
. et e, -t
PR T T VR, WL L R .

Wt e .
= o o

RARIRAY

RREC _ NODE
STRUCTURE

=" kV\-G\"“S‘t/cuN‘_ o:ttV‘

...............

......

Ffigure £3. Jontinued

— e l\«.v_ Narm

-‘Vkou_'fyﬁ'v

- L\od_ Lthﬁfl\

= han _key -Slag

- ‘A«.n-wt't(f(c

=» LN_V\LV:E - oittv-

HATTR. - NOOE
STRUCTURES

K-.

F-”\'w\n-no;w\a.

;7 L\O..v'&\/fl.

~> lan- Lt,v\j't N

~> L\oux - kt.\/ -‘GLo.j

—‘L\M-ww('ti fLL

—%l\QJ_V\Q)Ct_tittr‘

)

................
.....

W YT Y Y T T

.......

........

-» L\._n&mb

> hn- num-o;tt"

= b €irst ottt

= 1 curr. ad‘.'tf

—")L\n-fﬂﬂr‘th‘t

> L\v_huw\— S\.ok

—> kv\-n(.#.t- Sbk

- ‘\v\— '\\IN\-QL\'\(OL

> b €irstochild

RREC - NOCE
STRUCTURES

- L\n-nc.lﬁ\n.

L bl < Racmet

= hnonumoottr

/?—* Lv\... vsum-oittf

- L\n-‘Gv‘S't- &t'tv-

Shn_€ivst_attyr

3 Lv\- curr. kﬁ"

=~ cvrr ott,

> povre nt

ey 'Ood‘!.n't

-b\v\v\-h\Jn\-.’b.LL

v—bl\v_hum_Si k

= hnonext. sik

> e naxt - stk

p———‘»...

Ly lon-num_ochild

- b~ €irst_child

—';L\v\-vww\-tl\; (J.

)

—?L\V\-‘c{f‘ﬁ-ﬁl\.\ll

Figare 29, Continued

116

dbs-hie-head gt

Rirure 273.

"5L\0LV\-V\aLn~ta

L ke mo— S &q

— Lo(v_\- ;:.urr‘.s %]
—?l\olh- V‘oo't,_ 3 Lj
= 'no(v\-hoft - °(E

RHIE_DRID._NODE
STRUCTURLS

g SEE PAGE 116

-’Il«ir\- navne

-%Lo(h-num_scj

-—»ka(n-c.u.-r.s X

} SEE PAGE 114
ekJn-roo'f‘.SLg

'—7L\Olh...vxuk+-.olk

Hierarchical Database Schema Data “tructures

e N T T T A O T Y U T U I~ T Y W% -vvw—-v‘—-v—-ﬂ.~‘

example of this 1is the di_dli_tran field of the dli_info
structure in Figure 24 on page 122. The field di_dli_tran
is a structure of type tran_info. The bracket lines and the
periads indicate this.

We note that the diagram has a few instances of UNIONS.
A union is a construct that allows the user to connect
different structure types, specified by the union structure,
to a common structure, i.é., unions are also referred to as

variant records. Since the multi-lingual database system is

to support the mapping of multiple languageé, many portions
of the user structure are the same for any language used.
However, the union construct allows for the parts that have
to change between language interfaces, so that the common
data structures may be adapted to be useful to all language

interfaces.

114

LR k. PESAP R SO S T TR ST ST ULl Tl TR S S AP L i P, VU

R Y

The purpose of this appendix is to present a pictorial
o of the data structures used in the DL/I language interface.
O Since the code used for our thesis is the C programming
lanquaqge, the diagrams make use of its constructs, just as
the code dbes. Groups of related items are known as
structures in C, and it is easy to see from the diagrams
that each structure breaks'down into more detailed, workable
st;uctures. There are two major parts of this appendix. In
Figure 23 we present the hierarchical database schemé data
structures that are discussed in Chapter II. In Figure 24
we present the user data structures.

In the diagrams, an arrow indicates that the field is a
pointer to a structure. Each of the fields of such a
structure is preceded by a small arrow to 1indicate that,
indeed, a pointer from another structure is referencing the
field. An example of this is the di_ddl_files field of the
dli_info structure in Figure 24 on page 121. The field
di_ddl_+files points to a structure of type ddl_info. This
convention is especially useful when writing or tracing long

paths through the user data structure.

- On the other hand,; bracket lines are used to indicate

when the field of a structure is also a structure. The

bracket lines are drawn from the ‘"parent" field to the

"child" structure. A period 1is placed in front of the

bracketed structure’'s fields to indicate this fact. An
113

e
IR N O
Y S YD LI WL 2P WA ey -

et . -
..
'Y ¢

other interfaces. Whgn these are complete, the system needs
to be tested as a whole to determine how efficient,
effective, and responsive it is to users’ needs. The
results may be the impetus for a new direction in database

system research and development.

112

-" - --' -.'. . LY - -
RSy O N T R T i e N F R

T AT e e e T AT T T T e e N e e
P e e e, et T e e, o - -
----- » *

2 o providing an attribute-value pair fo be changed during a
b DL/I REPL call, and for building a new segment to be

[inserted during a DL/I ISRT call, is resident in the host

language, not in the DL/1 data langquage itsel+f. In order to
make such an embedded language function interactively, we
have been forced to introduce additional syntax for the
language interface. This additional syntax does not
represent a change to the DL/I data language, but rather,
serves only to facilitate our interactive implementation o#
the normally embedded data language, DL/I. The interface is
completely transparent to the DL/I user.

In retrospect, our level-by-level top-down approach to
designing the interface has been a fine choice. This
implementation methodology had been the most familiar to us
and proved to be relatively time efficient. In addition,
this approach permits follow—-on programmers to easily
maintain and modify (when necessary) the code. Subsequent
programmers will know exactly where we stopped because we
made many of the lower-levels stubs. Hence, it is an easy
task to replace these stubs with code. This is an advantage
of this approach that we did not realize until completion of
our implementation.

We have shown that a DL/I interface may be implemented
as part of a MLDS. We have provided a software structure to
facilitate this interface, and we have developed the actual

code for implementation. The next step is to implement the

111

implementation of DL/1 operations suc.a as: sequential
retrieval without SSAs, sequential retrieval without SSAs
within a parent, command codes F and V, and path retrieval
and path insertion {(command code D). In addition, we have
developed a LIL that 1is virtually reusable. With minor
modifications the LIL may be used hith the other 1language
interfaces. Our generic data structure design 1is also
noteworthy. Because of oﬁr extensive utilization of unions
(i:e., variant records), the other language interfaces may
use our generic data structures. We have extended the work
of Baner jee [Ref. 2] and Weishar [Ref. 3] by specifying and
implementing the algorithms for the language interface. In
addition, we have also provided a general organizational
description of the MLDS.

A major design goal has been to design a DL/I language
interface _to MBDS without requiring that changes be made to
MEDS or AEBDL. QOur implementation is completely resident on
a host computer. All DL/I transactions are performed in the
DL/1 interface. MBEDS continues to receive and process
transactions written in the unaltered syntax of ABDL. In
addition, our implementation has not required amy changes to
the syntax of DL/I. We are implementing DL/I in an
interactive language interface. However, DL/I is an
embedded database language that is invoked +from a host
language (i.e., PL/s/1, COBOL, or System/370@ Assembler

Language) by means of subroutine calls. The syntax for

110

VII. CONCLUSION

e o, . e S e e

In this thesis, we have presented the specification and
implementation of a DL/I language interface. This is one of
four language interfaces that the multi—lingual database
system is to support. In other words, the multi-lingual
database system is to be able to execute transactions
written in four well-known and important data langquages,
namely, DL/, SGL, CODASYL, and Daplex. DL/I is, of course,
the well-known hierarchical data language provided by, for
example, the IEM Information Management System (IMS). In
our case, we support DL/I transactions with our language
interface by way of the LIL; KMS, KC and KFS, in place of
IMS. A related thesis by Kloepping and Mack {(Ref. 191
examines the specif}cation and implementation of the SGL
interface. This work 1is part of ongoing research being
conducted at the Laboratory of Database Systems Research,
Naval Fostgraduate School, Monterey, California.

The need to provide an alternative to the development of
separate stand-alone database systems for specific data
models has been the motivation for this research. In this
regard, we have shown how a software DL/1 language interface
may be constructed. Specific contributions of this thesis

include the development of useful algorithms and the

109

Py

attribute~value pairs into the results file. Before. an
attribute name 1is stored into the results file, a check is
made to determine if this attribute matches the attribute
name of the segment sequence field. If the attribute names
match, an end-of-line marker is inserted in the results file
before the attribute-value pair is stored. Otherwise, the
attribute-value pair is stored without the end-aof-line
marker. This check is one of the reasons that the KFS task
of'formatting output is so easy for the DL/I 1language

interface.

C. THE KFS PROCESS

The KFS module is contained in the small procedure
dli_kfs. The KFS is only called by the KC when the results
of a request are to be displayed to the user. The only task
that the KFS performs 1is to display' to the screen the
attribute—-value pair found on the current 1line in the
results file. A loop prints out this line, a character at a
time, until the end-of-line or end-of-file marker is
reached. The current position within the results file is

then incremented by one and control is returned to the KC.

1@8

.'_.'--'_..-'_'._.' L A _-"‘."l-' PRSI
RIS SN NN

- - - . - . - *. .
. PAFCIAC IR S SR ST .ttt A, LR I R L T LN L
PN PN W W SR W R o W SR Sl P i WP A i S SRt TPt SIS DRI TS -

A I A 2 i A A = i i st i et e S A it ent e S S A dmm g antedie Jns ane S i R AR

S T B il Sl AhE A

———

Tlen{...CJhl

/Hdglbﬁvsu.ws'ab1

Fra - o

LPVLl‘wstaA1

Wm%¢~HHVﬁﬂQbLW
04N TO3Y T3H

?-u&dﬁ\...se_f

\ﬁdSlan lw&Jﬂl

f.JieC.:..Ce_rl

| ARV

‘ﬁds Y

PSR ok ot o o o s e Aaacie |

—————— e

panuiiuon

dpa=ryae

mwnDBZﬂéJ Oa(NI =Y

T N2 AINITY

‘?ﬂ$lo£|q9.

e e e e I
At TS e AT e
POAY G L)

12 RV Tar i 0 iy

FoamanAc

o~ PRAL B R

Vo3 PP

\\|

NS
o3V “NYIL

JyoDOWUS
o3 T1NQ

T

L2l sl

Sl aTvd 33§

h2l IOV 3DF

N TFONITN S

X S e Do

FN Ry e

2YA1>MALS
0N WA TAH

POliUTIUGD *4g 9dndly

7 ?Jlquuo

NO NN
Qa1 ~SWwWI

Joylo,ﬁ - W/)h# .I..J/~O]

JIYeLIDOYLS
o3I~ TQ

-~

e .
D

P T A - T T
RS L N L R
E e e e e T T e e s T AT
dncduade E WA R AP WA A Wl Sl S W W

a4 -

L.

PRGSOy SO WO S

5
g
.
p
g
!
g
3

M i il R o

paniuUTUOT *hZ IANF Ly

[

Ayye- ..ﬁ..d/».. .ﬁm <

Ju.rl(.dlv luum o

MO T 41§

/

ﬂ

\
AN

\

S3YOOMIAS
oart ~ QY =OMOYWAS

POV NS «—

Ju.ﬁc.\.J - A 4 PJ

WMo~ IS #\A“.\.\

T

ADTILS

03N “QWAT 3N

L"l}

25

. \-. .-- ‘I‘ .-. '\. .. ~
R R L AL A SRR S
PPN W P YWY, PP PR L P

Tt e T
T agT et et et -
- 0

. '\-.-'..
Lo el
B KSR I
Ly e 3 B t

- B T - . o v EA AP M S R St ek S nth oL AR a v st SO N

R € _KMS - 1nFO ~A— Lns- LisT SEE PACE 124
STRUCTVRE

= ns- Cnsert_oltes

—y LnS- Ly\sg,v’t_\/«.Ls

kK insete (ist P ins_seq-ptr

> (RS ~ Se§-name

Ly ons_next- (st

asanaos

INSERT_LISTS
STRUCTURES

/
/

|74
> (- (st SEE PRGE 1

Ly (NS - nsertoottes

~» (AS - Lr\m.rt _vchs

> (nS_ se9- P‘tr

> Lv\s..s&g..vw.me,

Ly onsoneto (st

Figure 4. Continued

les

INSECT_LISTS
. STRUCTURE

—p LV\S - Lks{

Flgure L.

..........

f—w PN &

> (e-value

>y LL"‘{‘/ pe

> L.L-- V\Q.Jkt-V&L

INSERT. INFO
STRUCIVRES

oottt

= it~valve

- LL-'f'\, P

— L(. - h(.&'t ..voi

sontinuea

W)Y

moL TAAMD IV b

~svodsaa-y

XYOIDOYAS
o3I~y S

PaNUTIUOT ‘47 3INITH

27 sy ¢

NOITNN
oaNI~ S

oYOP TSy T o

WJ?de.PMJ
oax~i ~\N0Q

st et

e e e, e N R R
DAL ST L SR S S
) T T Ry W Yt T I TP Y

e e e e e e e L -t
L e e __.»...‘._-_.
LI ULIP G Bl TN NP B S GIPNYE Shd

o

panuUI3UOY) *4y¢ IINFTY
ot
I%vd 3I3S MY NOTM IS E 13" POCWS
~03 -7~ ~03IC e
3P IS & 0P TS 4
T TN Farou— S "¢ o
2 20 bt B L
A0 =S & TR
DPOI PO TS & Jlﬁvo.u.-,\v,fd I
oI 0" 25 < MO YoundO = 2§
- Pe IS Zrna-Ypore =7 S
J00)~ 3G Loognw.x-..,w»u
doo)"2S & Joo) ~ 7%
bun s -5« Toans s
TIPS Y1 IS <]
u.ééLl.NWi u.(d&.dLl..;m.i &..wm.lw/ld_ P _
T T s e
>oshn...Mk.||||||.W~ Awod G < u.w.J..ubnan
\/\/\/ oS
SAYALDIMYAS S
oan! " S
R e a e emmmm xewm - - am Conll e e om SRR

124

DL - INFD
STRUCTVURE

Ao _€stoscte pos —1» S5l reg- POS
oR, N
. cLL- curr_ s L{- r:os

F"'SSL- V\uCt .
SsL-StmiUS

SI{T_STATUS L INFO
STRUCTURES ,/

—»Ssé_mﬁ-- XY
. '—_.‘*
L5 Sti- next L

s Sso_status "

Pigure 4. Continued

1293

..
..

panutjuc;

Ton= 3300 e Y <

P97 3ANITH

PO R

12

m.:u.)oy.m, - W.J o

\df:o(W.l....w. .

U:(DQvlwW.Jq

P9I

APYNADOIAS
o330~ AN

TYOADTIALS
QafMNIT3IMNaA~ I

A HebediE

W OIDOTRS
oardt ~A S

i
N .A
. --l
..y-L
S d
.-o#
L .l
.4A0.l
-..-l
- a4

Q..’ \'. --' ..

. At
[P

RN IRt Sl A e Sedih S Sod I R A i Adis aul avih aAD it sl ad

APPENDIX B - THE LIL PROGRAM SPECIFICATIONS

module DLI-INTERFACE

db-list : list: * list of existing relational schemas *
head-db-list-ptr: ptr: ,* ptr to head of the relational schema list *
current-ptr: ptr; “* ptr to the current db schema in the list *
follow-ptr: ptr: /* ptr to the previous db schema in the list *
db-id : string; "* string that identifies current db in use

proc LANGUAGE-INTERFACE-LAYER():
* This proc allows the user to interface with the system.
Input and output: user DLI requests *

=

stop : int: * boolean flag *
answer: char: 7 user answers to terminal prompts *.

perform DLI-INIT():

stop = ‘false’

while (not stop) do
-* allow user choice of several processing operations *,
print ("Enter type of operation desired");
print (" (1) - load new database");
print (" (p) - process existing database");
print (" (x) - return to the to operating system");
read (answer):

case (answer) of
I * user desires to load a new database *,
perform LOAD-NEW();
‘p: /™ user desires to process an existing database */
perform PROCESS-OLD();
Xt /™ user desires to exit to the operating system *
‘* database list must be saved back to a file
store-free-db-list(head-db-list. db-list):
stop = ‘true’:
exit():
default: * user did not select a valid choice from the menu ~
print ("Error - invalid operation selected"):
print ("Please pick again")’
end-case:
* return to main meny *
end-while:

end-proc:

131

proc DLI-INIT():

end-proc;

proc LOAD-NEW();

;* This proc accomplishes the following:

/* (1) determines if the new database name already exists.
/* (2) adds a new header node to the list of schemas.)
* (3) determines the user input mode (file/terminal).

/* (4) reads the user input and forwards it to the parser. and

'* {5) calls the routine that builds the template /descriptor files *

*

E3

answer: int; /* user answer to terminal prompts *
more-input: int: /* boolean flag *;

“proceed: int: /* boolean flag */

stop : int; /* boolean flag *,

db-list-ptr: ptr; ' * pointer to the current database */

reg-str: str: * single create in DLI forin *;

ptr-abdl-list: ptr: /* ptr to a list of ABDL queries (nil for this proc)*
tfid. dfid: ptr; '* pointers to the template and descriptor files *

/* prompt user for name of new database */

print ("Enter name of database");
readstr (db-id);
db-list-ptr = head-db-list-ptr:

stop = ‘false’;
while {not stop) do
"* determine if new database name already exists
'* by traversing list of relational db schemas *
if (db-list-ptr.db-id = existing db) then
print ("Error - db name already exists"):
print ("Please reenter db name"):
readstr (db-id):
db-list-ptr = head-db-list-ptr;
end-if:
else
if (db-list-ptr — 1 = "nil") then
stop -= ‘true’:
else
* increment to next database
db-list-ptr = db-list-ptr — 1:
end-else:

*
’

*

end-w hile:

132

C - - <.
M e I T A N T P -‘a'h_.-\‘—-~--b
PRI e T T T T e T e s e e e RO T <
- LT e, L NI R U TR ST B U RSN
BEPPEIT A g, Y NP P PR SR PP e . T L e s e Ly e e e i e e tatac At aratatad

/* continue - user input a valid 'new’ database name *’

/* add new header node to the list of schemas and fill-in db name *,

/* append new header node to db-list */

. create-new-db(db-id);

/* the KMS takes the DLI defines and builds a new list of relations *.
* for the new database. After all of the defines have been processed *
* the template and descriptor files are constructed by traversing
* the new database definition (schema). *

more-input = ‘true’;
while (more-input) do
* determine user’s mode of input */
print ("Enter mode of input desired");
print (" (f) - read in a group of defines from a file");
print (" (x) - return to the main menu");
read (answer);

case (answer) of
’f: /* user input is from a file */
perform READ-TRANSACTION-FILE():
perform DBD-TO-KMS();
perform FREE-REQUESTS():
perform BUILD-DDL-FILES():
perform KERNEL-CONTROLLER();

x: /* exit back to LIL */
more-input = false’:
default: /* user did not select a valid choice from the menu *-
print ("Error - invalid input mode selected");
print ("Please pick again");
end-case:
end-while;

end proc:

133

...........
............

Al il A b AT e AR S A SN R Siteiie Hites Wi A Madh el Sl 2l el Bdi e 4

proc PROCESS-OLD():
/* This proc accomplishes the following:
/* (1) determines if the database name already exists. *
/* (2) determines the user input mode (file 'terminal).

* (3) reads the user input and forwards it to the parser *

»

answer: int: . * user answer to terminal prompts *,

found: int; * boolean flag to determine if db name is found *
more-input: int: /" boolean flag to return user to LIL *

proceed: int; /* boolean flag to return user to mode menu *

db-list-ptr: ptr; ™ pointer to the current database *

req-str: str: :* single query in DLI form */

ptr-abdl-list: ptr: /* pointer to a list of queries in ABDL form *.
tfid. dfid: ptr: /™ pointers to the template and descriptor files *,

* /

* prompt user for name of existing database *,
print {"Enter name of database"}):

readstr (db-id):

db-list-ptr = head-db-list-ptr:

found = 'false’
while (not found) do
* determine if database name does exist
* by traversing list of hierarchical schemas *
if (db-id = existing db) then
found = ’true™:
end-if:
else
db-list-ptr = db-list-ptr ~ 1:
* error condition causes end of list{’nil’) to be reached *
if (db-list-ptr = 'nil") then
print ("Error - db name does not exist");
print ("Please reenter valid db name");
readstr (db-id):
db-list-ptr = head-db-list-ptr:

*

end-if:
end-else:
end-w hile;
134
‘.*n.’.; .;‘:q..&:‘,.‘.{/\nigﬁ"-t’.\""-'L{’&‘--‘_-.L'-A--".L.' e T e T et at et

T T TN TR Y e v -

e o T ——— P

- * continue - user input a valid existing database name *,
;* determine user’s mode of input *,

more-input = ’'true’;
while (more-input) do
orint ("Enter mode of input desired");

print (" (f) - read in a group of DL/I requests from a file"):
print (" (t) - read in a single DL /I request from the terminal”):
print (" (x) - return to the previous menu");

read (answer):

case (answer) of
f: = user input is from a file
perform READ-TRANSACTION-FILE():
perform DLIREQS-TO-KMS(}:
perform FREE-REQUESTS():

x

t": * user input is from the terminal *’
perform READ-TERMINAL():
perform DLIREQS-TO-KMS();
perform FREE-REQUESTS();

'x": * user wishes to return to LIL menu */
more-input = ‘false™:

défault: ¥ user did not select a valid choice from the menu ™/
print ("Error - invalid input mode selected"):
print ("Please pick again"):
end-case:

end-while:

end-proc:

proc READ-TRANSACTION-FILE():
* This routine opens a dbd request file and reads the transactions *
* into the transaction list. If open file fails. loop until valid *
" file entered *

while (not open file) do
print ("Filename does not exist"):
print ("Please reenter a valid filename"):
readstr { file):

end-while:

READ-FILE():

end-proc:

135

constant-list COMMA constant
i)
if (insert-attrs < 1)
alloc next insert-list item
end-if
if (literal-const)
convert-AlphaNumFirst{’constant’)
literal-const = FALSE
copy data-type = 's’ to insert-list
end-if
else
copy data-type = 'i’ to insert-list
end-else
copy ‘constant’ to insert-list
insert-vals ——

}

E: empty
{
if {label)
print ("Warning - "label-name’ label defined. but not referenced")
end-if
}
GOTO H
{
goto-found = TRUE
if ((!label) or ((label) and ('H''= 'label-name’)))
print ("Error - label for 'GOTO H’ not defined")
perform yyerror()
return
end-if
if (op-flag '= GnOp. or GnpOp. or IsrtOp)
print ("Error - loops used only w. GN, GNP, or ISRT operations")
perform yyerror()
return
end-if
if ((! spec-ret-op) and (single-build))
set loop-flag for use by KC
end-if
else if (! single-build)
print ("Error - loops cannot be used w multiple ISRT ops")
perform yverror()
return
end-else-if

ki

149

r— LSt i s e s S g end gl s Jeat e el -Radil s Biefh i At A Al el et A kI it e 2 e I e S S i ML gt e

field-name-list: field-name
alloc and init insert-list node
alloc first insert-list item
copy 'field-name’ to insert-list
insert-attrs ——

}
field-name-list COMMA field-name

alloc next insert-list item
copy 'field-name’ to insert-list
insert-attrs ——

}

1

value-list: LPAR constant-list RPAR
{
inserting = FALSE
if (insert-attrs > 0)
if (insert-attrs != insert-vals)
print ("Error - too many, or not enough values inserted")
perform yyerror()
return
end-if
end-if
}

1

constant-list: constant
{
if (insert-attrs < 1)
alloc first insert-list item
end-if
if (literal-const)
convert-AlphaNumFirst{’constant’)
literal-const = FALSE
copy data-type = s’ to insert-list
end-if
else
copy data-type = i’ to insert-list
end-else
copy ‘constant’ to insert-list
insert-vals ——

}

148

N e et e . . St et - L - R . . N St R R
R N S Ay I e e T e N T N T

t . . Ve - PRI R UL S R IR CER IS SRR LI T S K ~ .. BRI R TN
PP VAL RS ST WS LWL IPEIPU UL PR G B GRS POV S RGO R T VT B G S S S % L RS S, .

else
print ("Error - seg-name must be specified if GN or GNP op")
perform yyerror()
return
end-else
end-if

.}

J: empty
H

{
label = TRUE
save label-name ("H’) for later comparison with GOTO statement

}

dli-operator: empty: . GU . GN : GNP ! GHU ;| GHN GHNP - build-segs ISRT
{

set appropriate operator-flag

}

1

build-segs: build-segment

{

build-count = build-count + 1

}

build-segs build-segment

{

build-count = build-count -~ 1
single-build = FALSE
}

build-segment: BUILD I COLON
{
inserting = TRUE
}

value-list
[empty
{
alloc and init insert-Jist node
}

LPAR field-name-list RPAR

147

LR S I A B Ll Mhe

............

if ((seq-fld-has-value) and (single-build))
delete last abd}-str present
(ie, seq-fld given, no retrieve request required)
end-if
alloc and init a new abdl-str
copy "/ INSERT (< TEMPLATE, ‘segment-name’>" to abdl-str
if (single-build)
for (each item in tgt-list)
concat ", <’seq-fld’, ***..***>" to abdl-str
end-for
end-if
else
for (each node in the list of insert-lists)
concat ", <’first attr-name’, 'first attr-value’>" to abdl-str
end-for
end-else
for (each item in insert-list)
concat ", <’attr-name’, ’attr-value’>" to abdl-str
end-for
concat ") " to abdl-str
end-for
end-if

if ((! spec-ret-op) and (singie-build))
for (all abdl-str(s). except the last one)
concat tgt-list and BY-clause to RETRIEVE regs
(ie. "('tgt-list’) BY 'seq-fld’ i")
if (operator-flag = ISRT) and (¢cmd-code = StarD)
retrieve all attr names and add to tgt-list
end-if :

end-for

concat all attrs to last RETRIEVE request
concat ") BY ‘sequence-field” " to last RETRIEVE request

if (operator-flag = DLET)
form the descendant deletes to complete the DLET req
end-if
end-if

if (spec-ret-op)
if (operator-flag = GN)
form the descendant retrieves to complete the G\ (no ssa) req
end-if
else if (operator-flag = GNP)
form retrieves for children to complete the GNP (no ssa) reg
end-else-if

146

ARG e e 0 i Sall M A it R e N S At Al abd aeul et Suifh aiichiratht Sl g it S i S et St S S e

T TR ————— LIRS Tt S IR AC U TR R -t A A i - B Al T * DI ™ A A S il S S i S SR S I A e A

perform yyerror()
return
end-if
end-if
for (each node in the list of insert-lists)
if (! single-build)
re-establish the saved curr-seg-ptr and segment-name
end-if
if (insert-attrs < 1)
copy all segment attrs to insert-list and count insert-attrs
end-if
if (insert-attrs != insert-vals)
print ("Error - too many, or not enough values inserted")
perform yyerror()
return
end-if
for (each attribute in the curr-seg)
if (segment attribute missing from insert list)
add item to insert-list with default values
of 'Zz’ if type CHAR, and 0’ if type INT
end-if
else
if (insert-list item = seq-fld of curr-seg)
seqg-fld-has-value = TRUE
if (! seq-fld-has-value)
print ("Error - seq-fld value req’d in ISRT op")
perform yyerror()
return
end-if
if (! valid-attribute(curr-seg-ptr, field-name, &attr-len, &attr-type))
print ("Error - 'field-name’ attr does not exist in 'segment-name’ segment")
perform yyerror()
return
end-if
if (insert-list data-type != attr-type)
print ("Error - ’field-name’ attr must be type ‘attr-type™)
perform yyerror()
return
end-if
if (attr-len < strien(insert-list value))
print ("Error - field-name” attr max length = “attr-len™)
perform vyerror()
return
end-if
end-else
end-for

145

te e .« =t . e E R A e~ a¥aTo ettt
L PR WP P P RIS PR PP P RPN LN G S . L

05

........

IR TR LT AN TN ATt N A T I .,
LI PRI IAE s ST ST TP s ae N te te A I P R A

.....

C: empty
{

attr-node type = '’s’ /* default condition ™/,

}
TYPE EQ data-type COMMA

data-type: CHAR
{

attr-node type

}
INT

{

attr-node type

}
FLT

{

attr-node type

}

k)

I
v

Il

[
-4

dml-statement: J ssa

if ((label) and (! goto-found) }
print ("Warning - ’label-name’ label defined. but not referenced")
perform yyerror()
return
end-if
if (operator-flag = ISRT)
if *((single-build) and (star-d))
print ("Error - "*D’ cmd code implies a multiple seg ISRT")
perform yyerror()
return
end-if
if ((! single-build) and (! star-d))
print ("Error - "*D’ emd code req'd for mutiple seg ISRT")
perform yyerror()
return
end-if
if (! single-build)
if (build-count != ssa-count)
print ("Error - num of segs built not equal to num ssa’s")

144

...

B W WL Wy vovrwrer——

LA Jaeh el el Sadh susd ot
».-,-.*.‘_-.-;‘

.............

CHRY
.....

.....
......
.......

field-spec: field-name

{

if (valid-attribute(seg-ptr, field-name. &attr-len, &attr-type))
print ("Error - ’field-name’ attr doubly defined in 'segment-name’)
perform yyerror()
return

end-if

else
copy field-name to attr-node

end-else

attr-node key-flag = 0

attr-node multipie field = 0

3

COMMA field-data
LPAR field-name

{

if (valid-attribute(seg-ptr, field-name, &attr-len, attr-type))
print ("Error - field-name’ attr doubly defined in 'segment-name’™)
perform yyerror()
return

end-if

else
copy field-name to attr-node

end-else

COMMA SEQ B RPAR COMMA field-data

{
attr-node key-flag = 1
}
B: empty
{
attr-node multiple field = 0
}
COMMA M
{
attr-node multiple fleld = 1
}
field-data: C BYTES EQ INTEGER
{
attr-node length = INTEGER

}

143

Pr—

L R R TR R A AR ML vl e et i e ag

A: empty

{

connect new segment-node to the dbid root-ptr

}
i COMMA PARENT EQ segment-name
{

seg-ptr = the root segment of the db
if (valid-parent(seg-ptr, segment-name. parent-ptr))

connect the new segment-node to the appropriate parent-node

establish curr-1st-child-ptr
parent-node num-child——
first-child and sibling node(s) num-sib~~
end-if
else
print {"Error - 'segment-name’ parent-node does not exist")
perform yyerror()
return
end-else

}

field-list: field-desc
{

connect new attr-node to segment-node

field-list field-desc
{

connect successive attr-node(s) to segment-node

}

9

field-desc: FIELD NAME EQ
{

allocate and init a new attr-node
segment-node num-attr+—

}

field-spec
142
LS ELT A N A A A AL SO P I AL DA Ay

P L e e T T .
LIPS PR VRS U S W P DAY W NNy A

L AR e Tt Mgt diage Sath Sl B Sauts e s dint Mumn SEni dihute S sy Juite et dunst. e 4 5 . - B aRAC M i LM athlt ek DEvh IOV Saed inh gt St gved e pien i b i

segment: SEGM NAME EQ
{

allocate and init a new segment-node
dbid-node num-seg+~—+

}

segment-spec

Ta b

segment-spec: segment-name

S S

if (! valid-child(segment-name, curr-1st-child-ptr))
copy segment-name to current segment-node

end-if

else

' print ("Error - ’segment-name’ segment doubly defined in db")
perform yyerror()

" return

. end-else

- }

" A

. :

L BN

141

-, PR - L. PRI .)
.- e . . . N T T S P A SR L. [
- . - - - . % . P PP - - " . - - . Y. - . . . - . - - - - . . - - - - . - - - . . - - - »
F R S o Pt S P S A T U P ST <. L T AL L R R S ANt
DA T L A T et IRV SRR . N . e . . .
LR ot N S S T UL WA YL T SRS U WP L\ AL S PSS RO P U L S W U Dt A ¥ .ALA".A\“.A‘_\ I

DGR LN S k) ""-.!'-..!'~'I. ",I'Al..l- -.!_’.L_. C i anes S e S

C%token /* List All Tokens From "LEX". and their TYPE, here *-

O%start statement
%%

statement: dml-statement
if (! spec-ret-op)
save last curr-seg-ptr
end-if
return

}

ddl-statement

{

return

}

ddl-statement: db-desc segment-list

db-desc: DBD
{
creating = TRUE
curr-Ist-child-ptr = NULL

!
NAME EQ db-name
{

locate dbid schema header node

if (db names do not match)
print ("Error - given db-name doesn’t match db-name in file")
perform yyerror()
return ’

end-if

}

segment-list: segment-desc
segment-list segment-desc

segment-desc: segment field-list

140

L e . . . P
» e e e e e e e e v

RIS
PR

L At S UL R et T e e et .t T
A" e T et te TNt s, ", s, e e tal te it T T et T e e e e e e Tt e
E WP S e (D PN PN P P . LS PSSP U N WP . M CIPRIP- P I, W

N

%4

" P PR S e
et e Tt L A T T P S R
LIPSLIPN P Iy T I W DR ST T WA TP T

boolean: creating '* signals a DBLoad vs a DBQuery =/

boolean: updating /" signals a DLI update request *,

boolean: label ‘* signals DLI statement has a label */

boolean: or-where “* signals an OR term in SSA predicate *,
boolean: and-where /* signals an AND term in SSA predicate *°
boolean: literal-const /* signals alpha constant vs integer constant *’
boolean: inserting /* signals ISRT operation */

boolean: not-marked /* label not marked for attachment of loop ptr*’
boolean: first-ssa /* signals working on 1st ssa of DLI request *
boolean: seq-fld-has-value /* the 'value’ of seq-fld is given in req ™
boolean: missing-root /* missing root seg in ssa specif of DLI req */
boolean: goto-found :* GOTO found following last ssa in DLI req */
boolean: spec-ret-op /* special retrieve op (GN or GNP -- all segs) */
boolean: single-build ™ single segment to be built for ISRT op */

‘boolean: star-d /* cmd code D used in DLI ISRT op */

ptr: seg-ptr /* ptr to a schema segment */

ptr: curr-seg-ptr /¥ ptr to current segment in schema */

ptr: prev-seg-ptr /™ ptr to previous segment in schema */

ptr: parent-ptr /* ptr to parent of current segment, in sclrema */
ptr: curr-1st-child-ptr /* ptr to 1st child of curr parent in schema *’
ptr: label-ptr /* ptr to abdl-str that corresponds to label */
int: attr-len /* length of current attribute */

int: insert-attrs /* number of attrs inserted during ISRT op *,
int: insert-vals /* number of vals inserted during ISRT op */
int: operator-flag /* dli-operator in DLI request */

L T

int: addl-tgt-count /*

int: build-count

count of add’l items added to tgt-list *

1%

int: ssa-count /* count of the number of ssa’s in multiple ISRT *
char: c¢md-code /* command codes 'D’, ’F", or 'V’ */

char: attr-type /* ’s'=CHAR, 'i'=INT, 'f=FLOAT, from schema *
char: data-type /* same as attr-type, for an input ’value’ *

str: label-name
str: segment-name
str: field-name
str: abdl-str

str: temp-str

flag: loop-flag /* there’'s a GOTO ’label’ loop in curr request *
list: tgt-list /* list of sequence field attribute names *

list: insert-list /* list of attribute-value pairs for ISRT op *

list: insert-nodes /™ list of insert-list(s) for multiple ISRT op *

139

LR
. o

count of number of segments built for ISRT op */

Tl T TY Y T

e e P Nt At A AN e S A N " s i e e R . e v e ———— Y MECRas Miac Atershier bt n e Jatat e dran & ,

APPENDIX C - THE KMS PROGRAM SPECIFICATIONS

proc kernel-mapping-system ()
perform parser()

perform match()

s end-proc kernel-mapping-system

.
h proc parser()

| if (operation '= CreateDB, vice work with existing DB)
alloc and init initial kms data structures
access and save length of dli request .
free any existing abdl-str(s) from a previous parse
end-if

initialize the input request ptr
perform yyparse()
reset all booleans and counter variables

if (operation !'= CreateDB)
free all kms-unique data structures
end-if
end-proc parser

proc yyparse ()

This procedure accomplishes the following : */

* (1) parses the DLI input requests and maps them to appropriate */
J* abdl requests, using LEX and YACC to build proc yyparse(). */

/* (2} builds the hierarchical schema. when loading a new db. */
* (3) checks for validity of segment and attribute names within *,
* the given db schema, when processing requests against an */
/* existing db. */

138

LR T T U T LT S T
PR . W e . LT .‘ L _- R A -‘—'. >'~~.’.'.‘.‘ '.\ -
“ R T P N T TR N IR A N UL AV DS

B -
L UL N L SRS P ST P R “ B B > - . p - *
DR R W VAR ST WP S WAL n VR L R W ST W P RO, .".r‘-‘- SO Y .L.a__a‘_a"‘ "'A I_A_._Al_l_‘)‘l ‘41

- al AuiSHA P AR St B Tl S S o oh i o UL M e oA e e i dia S iings. et Snge S Jiuth e St Tt ot St 2l Jani

proc DLIREQS-TO-KMS():
/™ This routine causes the DL/] requests to be listed to the screen. *,
/™ The selection menu is then displayed allowing any of the =/
/% DL/1 requests to be executed. */

perform LIST-DLIREQS();
proceed = ’true’:
while (proceed) do
print ("Pick the number or letter of the action desired"):
print (" (num) - execute one of the preceding DL/I requests"):
print (" (d) - redisplay the file of DL/I requests");
print (" (r) - reset currency pointer to the root"):
print (" (x) - return to the previous menu");
read (answer); : :

case (answer) of
‘num’ : /* execute one of the requests */
traverse query list to correct query;

perform KERNAL-MAPPING-SYSTEM();
perform KERNEL-CONTROLLER();

’d> : /* redisplay requests */
perform LIST-DLIREQS():

't : /* reset currency ptr to the root ¥/

perform CURR-PTR-TO-ROOT():
: /* exit to mode menu */
proceed = ’false”:

default : /* user did not select a valid choice from the menu */
print (" Error - invalid option selected");
print (" Please pick again");
end-case;

end-while;

end-proc:

137

e e e e D T I .'_. FE e T A S P
I e S I AT W WL A, e e T L U T L

PR . - . - . - Wt
AN VPR G I S P Wi PR P i VAP I S AL DA SIS I ST DI DAL AT SRR IV, Sy 100, WA

. . St et
AP S TSR U. W W

‘r"r_r. "'f'

LA At B A et Sl SR et Jngt Bacme dacl Sl o

proc READ-FILE();
/* This routine reads transactions from either a file or the * -
/* terminal into the user’s request list structure so that *

/* each request may be sent to the KERNEL-MAPPING-SYSTEM. *.

end-proc:

proc READ-TERMINAL();
7* This routine substitutes the STDIN filename for the read ~/
* command so that input may be intercepted from the terminal */

end-proc;
pro¢ DBD-TO-KMS();
/* This routine sends the request list of database descriptions */
/* one by one to the KERNAL-MAPPING-SYSTEM *
while (more-dbds) do
KERNAL-MAPPING-SYSTEM();

end-while;

end-proc:

136

B e a4

DA NGRS e M BN - Mt R R T I oo

NFGOTO H

{0

goto-found = TRUE

if ((!label) or ((label) and (’H’!= ’label-name’))})
print ("Error - label for 'NFGOTO H’ not defined")
perform yyerror()
return

end-if

if (op-flag !'= GnOp. or GnpOp. or IsrtOp)
print ("Error - loops used only w, GN. GNP. or ISRT operations")
perform yyerror()
return

end-if

if ((! spec-ret-op) and (single-build))
set loop-flag for use by KC

*end-if

else if (! single-build)
print ("Error - loops cannot be used w/ multiple ISRT ops")
perform yverror()
return

end-else-if

}

K: empty
dli-op

1

dli-op: DLET
{
if (not preceeded by a GET HOLD operation)
print ("Error - DLET must be preceeded by GHU, GHN, or GHNP")
perform yyerror()
return
end-if
else
op-flag = DLET
alloc and init a new abdl-str
* formulate the first DELETE request *
copy "! DELETE ((TEMPLATE = ‘segment-name’)" to abdl-str
for (ea item in the tgt-list)
concat " and (‘item-name’ = ***...***)" 1o abdl-str
end-for
concat ") " to abdl-str
end-else

}

150

Vet it e et et et

.... Sn B ariee: Ba A

Ad

~
Ladasens.d

[iR I s e N i i e T TR P i i A N N T R W T S T T T TR TN T A TN TN TN TN TN T

- chg-pred REPL
, {
if (not preceeded by a GET HOLD operation)
print ("Error - REPL must be preceeded by GHU. GHN. or GHNP")
perform yyerror() :
return
end-if
else
op-flag = REPL
end-else

}

chg-pred: CHANGE

{

updating = TRUE

}

field-name TO constant

{

updating = FALSE

if (! valid-attribute(curr-seg-ptr, field-name, &attr-len, &attr-type))
print ("Error - ’field-name’ attr does not exist in ’segment-name’ segment")
perform yyerror()
return

end-if

if (literal-const)
convert-AlphaNumFirst(’constant’)
literal-const = FALSE
data-type = s’

end-if

else
data-type =1’

end-else

if (data-type '= attr-type)
print ("Error - ’field-name’ attr must be type ’attr-type’™)
perform yyerror()
return

end-if

if (attr-len < strlen(’constant’))
print ("Error - ‘field-name’ attr max length = “attr-len™")
perform yyerror()
return

end-if

151

ST I e 4 "\""~‘f'~"."n“.',! v *,-II,-.I-. a. »l .I .I ..l .l .l .I .I .l LRan o aocas it 0 2 aa S S St O JA I ———— **

alloc and init a new abdl-str
copy "] UPDATE ((TEMPLATE = ’segment-name’)" to abdl-str
for (each item in tgt-list)
concat " and (’seq-fld’ = ***..***)" to0 abdl-str
end-for
concat ") <’field-name’ = ’constant’> |" to abdl-str

}

1

ssa: seg-srch-arg
{
ssa-count = ssa-count + 1
prev-seg-ptr = curr-seg-ptr
if ((operator-flag = ISRT) and (! single-build))
save the curr-seg-ptr and segment-name in first insert-list node
end-if
first-ssa = FALSE
}

i ssa seg-srch-arg

{

ssa-count = ssa-count + 1

if (the parent of the curr-seg-ptr = prev-seg-ptr)
prev-seg-ptr = curr-seg-ptr

end-if

else
print ("Error - SSA specifies incorrect hierarchical path")
perform yyerror()
return

end-else ‘

if ((operator-flag = ISRT) and (! single-build))
save the curr-seg-ptr and segment-name in first insert-list node

end-if
}

?
seg-srch-arg: dli-operator segment-name

seg-ptr = the root segment of the db
if (! valid-parent(seg-ptr, 'segment-name’, curr-seg-ptr))
print ("Error - 'segment-name’ segment does not exist")
perform yyerror()
return
end-if
if ((operator-flag '= ISRT) or (single-build))
alloc and init a new abdl-str and a new tgt-list item
copy " RETRIEVE (" to abdl-str
copy segment sequence field and length to tgt-list
end-if

152

L Y LA L R S SR SA AP a® - .
I W PN N TN PRSI PR SRS

Callia i Cat e i T et S M Aonhe el oMM JNIVA A ivd MV Areh ves o s SUv Be T T T e Y T AT W W~ v W e N

if ((label) and (not-marked))
not-marked = FALSE
label-ptr = current abdl-str
end-if i
if ((first-ssa) or (missing-root))
if (curr-seg-ptr = root of the db)
insert seq-fld(s) to tgt-list for all parents/grandparents
addl-tgt-count = number inserted
missing-root = TRUE
end-if
end-if
save ’segment-name’ for later use

}
L G

{
delete first ’addl-tgt-count’ items from tgt-list
add!-tgt-count = 0
if (single-build)
concat ") " to abdl-str
end-if
E K
}
dli-operator
{
spec-ret-op = TRUE:

}

E K
L: empty
ASTERISK N
N.D F 0V

{

set cmd-code to appropriate code (StarF, or StarV)

if (NisD)
star-d = TRUE
if (singl:-build)
set cmd-code to StarD
end-if
end-if

}

153

...................................
...............

G: empty

if (! single-build)
do nothing
end-if
else
if (curr-seg-ptr = root of the db)
concat "TEMPLATE = 'segment-name’ to abdl-str
end-if
else
concat "(TEMPLATE = ‘segment-name’)" to abdl-str
for (ea item in tgt-list)
concat " and (’item-name’ = ***._***)" to abdl-str
end-for
end-else
‘ end-else

}
LPAR boolean RPAR

{
if (or-where)
concat ")" to abdl-str
or-where = FALSE
end-if
}

boolean: boolean-term

concat "(TEMPLATE = 'segment-name’) and " to abdl-str

form symbolic id predicates : "(’seq-fld’ = ***..***)" from tgt-list,
for all previous segments, and concat them to the abdl-str. each one
separated by " and ".

concat temp-str to abdl-str

¥
boolean OR

{

or-where = TRUE

abdl-str 11} = *(°

concat ") or ((TEMPLATE = 'segment-name’) and " to abdl-str

copy ‘empty str’ to temp-str

}

boolean-term

{

form symbolic id predicates : "(‘seq-fild* = ***...***)" from tgt-list.
for all previous segments, and concat them to the abdl-str, each one
separated by " and ".

concat temp-str to abdl-str

}

L}

154

--
........

......

1

- boolean-term: boolean-factor

boolean-term AND

{
and-where = TRUE

concat " and " to temp-str

}

boolean-factor

bl

. boolean-factor: predicate

Ll

predicate: field-name

{ .
if (! valid-attribute({curr-seg-ptr, field-name, &attr-len, &attr-type))
print ("Error - 'field-name’ attr does not exist in ‘segment-name’ segment")
perform yyerror()
return
end-if
else
if ((! and-where) and (! or-where))
alloc temp-str
copy "{" to temp-str
end-if
else
concat "(" to temp-str
end-else
concat 'field-name’ to temp-str
save 'fleld-name’ for later use
and-where = FALSE
end-else

}

comparison

{

concat " ’comparison’ " to temp-str

}

constant
{
if (literal-const)
convert-AlphaNumFirst(’constant’)
literal-const = FALSE
end-if
concat "'constant’)" to temp-str

}

155

L SR R sl ey » -
., . . -, A RS T *_t_ - LSS e AR St A A Sl At i d A S el s et ot T TS T YTy ‘1:"mv"7“"'T

comparison: EQ NE LT { LE ! GT | GE

constant: QUOTE H QUOTE
{ .
literal-const = TRUE
if ((! inserting) and (! updating))
if (attr-type !='s’)
print ("Error - 'field-name’ attr must be type INT")
perform yyerror()
return
end-if
if (attr-len < strlen(’H’))
print ("Error - ’field-name’ attr max length = 'attr-len’™)
perform yyerror()
return
end-if
end-if

}
INTEGER
{
if ((! inserting) and (! updating))
if (attr-type !'="1’)
print ("Error - ’field-name’ attr must be type CHAR")
perform yverror()
return
end-if
if (attr-len < strlen(CINTEGER’))
print ("Error - 'field-name’ attr max length = ‘attr-len’")
perform yyerror()
return
end-if
end-if
}

H: IDENTIFIER
VALUE

db-name: IDENTIFIER
segment-name: IDENTIFIER

field-name: IDENTIFIER

156

T e——, r‘v—_‘

empty: ;

end-proc yyparse

%%

proc yyerror(s)
char s
if (operation = CreateDB)
set error flag for the LIL)
print ("Error - DBD Description file for 'curr-seg’ in error")
free all the malloc’d variables in the current schema
end-if
else
set error flag for the LIL
free all the malloc’d variables in the kms data structures
end-else

reset all boolean and counter variables
print (s)
end-proc yyerror

157

et et e r et et ettt R N - e I o
o e e L P L I N g e e e T T R e e
A A T T T T e s Ty e z) e e I N RN .
DR E WAOPRNE, PCPOP G, POFRr

—— T T

proc MATCH()
/* This routine checks the operator flag for the incoming */

/* transaction and branches to the appropriate DL/1 operation *;

kms-list : list;

sit-list : list;

status-list : list;
head-kms-list-ptr : ptr;
head-sit-list-ptr : ptr;
status-ptr : ptr;

sit-ptr : ptr;
first-status-node-ptr : ptr:
curr-status-node-ptr : ptr;

/*-the kms list cannot be null */
if (kms-list <> ’null’)
case {kms-list.operation)
"GhuOp" : /* Get hold unique operator */
perform GET-HOLD-UNIQUE();
"IsrtOp" : '* Insert operator */
perform INSERTY();

"GuOp" : /* Get Unique operator */
perform GET-UNIQUE();

"GnOp" : /* Get Next operator */
perform GET-NEXT(};

"SpecRetOp" : /= Special Retrieve operator */
perform SPECIAL-RETRIEVE();

"GnpOp" : /* Get Next Within Parent operator */
perform GET-NEXT-PARENTY{):

end-case;

end-proc:

158

......................................
..........

T VT ———" T T T T e e e

proc GET-HOLD-UNIQUE()
/* A GHU opration allows one user exclusive access to the database
/* so that subsequent deletes or replaces will occur before any */

/* further users can access the database. */

*

dlet-flag : int; /* boolean flag to tell if found a DELETE op */
done : int; /* boolean flag */

if (sit-list <> 'null’)
print ("Error - sit-list is not null as required for GhuOp");

else

/* When a GHU is found. the type of operation must be identified. */
;* The kms list is scanned looking for a delete operator. If found, */
/* a status node is created and set to point to the first node of */
/* the kms list (the GHU). A second status node is created and set */
to the kms node that has the beginning-of-request delete flag */
/* set. If the delete operator is not found, this indicates a */
/* replace operation or a list with nothing but GHU’s. In this case */
/™ a status node is created and set to point to the first node of */
/* the kms list (the GHU). */

done = ’false’;
dlet-flag = ’false’;
sit-ptr = kms-list + 1;

/* walk down sit list until find DELETE operator or empty list */
while (sit-ptr <> ’null’ OR not done)
if (sit-ptr.operation = DletOp)
’* case of DELETE operation */
if (fisrst-status-list-ptr = ’null’)
/* case of status list being empty */
allocate a new status node;
first-status-list-ptr = new status node;
curr-status-list-ptr = new status node;
status-ptr = head-kms-list-ptr;
allocate a new status node:
append status node to the status list;
status-ptr = sit-ptr:
end-if:
else
print ("Error - status list not null as required for GhuOp"}):
end-else:
dlet-flag = “true”;
done = “true’;
end-if;
sit-ptr = sit-ptr ~ L:
end-while:

159

., - .

. O . R Lt et et N . - N
DI .ot S A e AR LR R
PR WU ST, VAP SR gy R T T S I TR PSP JTs BUP Bgs J oI Ty IR W SRS S - S G W 0. 30 R wE s

if (dlet-flag = ’false’)
/* case that no DELETE operators were found in sit list; this */
/* indicates that we have REPLACE operations or just GHU’S */
allocate a new status node;
first-status-node-ptr = new status node;
curr-status-node-ptr = new status node:
status-ptr = head-kms-list-ptr:
end-if:

*
/

= set sit list ptr to heading of the kms list and null out kms ptr
head-sit-list-ptr = head-kms-list;
head-kms-list = 'null™
end-else:

end proc;

proc INSERTY()
/* An insert operation is used to add a new segment. "node" */
/* to the database. */

first-bor : int: ™ boolean flag set when beginning-of-req found *;

"* An insert operation can only access the database from the root. */
“ As long as the sit list is null, then we know that the currency */
" pointer is pointing to the root. */
if (sit-list <> "null’)
printf("Error - sit list not null as required for IsrtOp"):
else
* set sit ptr to the head of the kms list ¥,
sit-ptr = head-kms-list-ptr;
first-bor = TRUE;

160

T TR TTTT T p rr———— v .e.y

&

walk down the kms list until it is empty *
while (sit-ptr <> ’null’)

-* When an insert is detected, the kms list is scanned and a *,
status node is created and set to point to each kms node */
* that contains a beginning-of-request flag. The kms list *

* is then transferred to the sit list before exiting. *,

=

if (sit-ptr.BOR = "true’)
allocate a new status node:
if (first-bor = “true’)

* case of the status node being the first on the list *
first-status-node-ptr = new status node:
curr-status-node-ptr = new status node;:
first-bor = “false’: ‘

end-if;
else
append the status node onto status list;
end-else;
/* fill in the status node’s contents *;
status-ptr = sit-ptr;
end-if:

sit-ptr = sit-ptr «~ 1:
end-while;

/* set sit list ptr to head of the kms list and null out kms ptr */
head-sit-list-ptr = head-kms-list-ptr;
head-kms-list-ptr = ‘null’;

end-else:

end-proc:

161

Ratrierth Radut M i e S et o

L. . B . A ROl 3 -

proc GET-UNIQUE()

"* A GU operation is used to access the database from the *.
*

*

root of the database. */

'* A GU operation can only access the database from the root. *:
* As long as the sit list is null, then we know that the T
* currenc: pointer is pointing to the root.
if (sit-list <> "null’)
print {("Error - sit-list not null as required for GuOp"):
else
if (first-status-node-ptr = ‘null’)
When a legitimate GU is found, we are sure that the
the currency of the request is correct. In this case */
/* we simply transfer the sit list for the GU from the */

kms list to the sit list and create a single status */
node that points to the first request of the GU. */

i

=

* 7
/

/

* x

allocate a status node
allocate a new status node:
" set head of the status list to the allocated node ¥,
first-status-node-ptr = new status node:
curr-status-node-ptr = new status node:
* fill in the contents of the allocated node *:
status-ptr = head-kms-list-ptr:

* set sit list ptr to heading of the kms list and null out kms ptr *’
head-sit-list-ptr = head-kms-list-ptr;
head-kms-list-ptr = "null’;
end-if;
else
print ("Error - status list not null as required for GuOp"}):
end-else:

end-else:

end-proc:

162

R e T U P T W ey oy

proc GET-NEXTY()
/* A GN operation is used to access the next lower level of the ™/
;* database. It is used only after a GU operation has established */

a currency ptr to a specific level of the database. *

I

found. done; /™ boolean flags */
prev-kms-ptr: - ptr to the previous node on kms list *,
prev-sit-ptr; * ptr to the previous node on sit list *:

if (head-sit-list-ptr = 'null’)
* with the sit list beint null. a GN is the same as a GU if the name
/* of first node of the kms list is the same as the root segment x
if (head-kms-list-ptr.seg-name = root segment name)
perform GET-UNIQUE();
énd-if;
else
print ("Error - currency pointer must be set to the root"):
print (" or specify complete path");
end-else;

else

if (first-status-node-ptr = 'null’)

print ("Error - status list null for GnOp"):

end-if;

else
When a valid GN is found, we know the segment that we want is */
the next occurrance of a legitimate child or the segment the *
. ® currency pointer points to. If the segment is a child then we *:
create a status node pointing to the first node of the kms list. *;,
By being a child we guarantee ourselves that part of the kms */
/* list matches some of the sit list so the status field of the */
/* allocated status node is set to MATCHPART. If the segment is not */
a child but the current segment, the amount of overlap between */
the sit list and the kms list must be checked. The parent pointer™’
of the first kms node is set to the node above the node that it *,
matches in the sit list. A status node is created pointing to the™’

* first node of the kms list. The kms and sit lists are then *
“ checked to see how much overlap they contain. The status fleld *
*is set to MATCHPART or MATCHALL as appropriate. »

dli-ptr- - di-saved-seg-ptr2- > hn-first-child- > hn-name):
if (head-kms-list-ptr.seg-name is a valid child of the node
currently pointed to by the currency pointer)
" segment we want the next of is a child of the current segment”
status-ptr = head-status-node-ptr:

163

- - - - - ~ . . - - . . -
- - o L . DN T B e R I PR A
e T e e T e T T T e e e e T T T e e T e e e e e e T Y e T e T e e T e e e e et
R SR PR SIS, S, S SR L S AL ILAL. STk SR Vol SR WAL Sl MRIE Sl WS SR Wl Sl Wl S W YAl el Wil SR Wl VLA S WAl Sour Sl G ar . 3 I Sel Sl S AL I AR |

P AN -t i Mg ey 4

do-next-retrieve()

/* This procedure accomplishes the following: */

/* (1) Sets the kc-curr-pos to the next SIT. */
I3 *

/ /

/* (2) Calls build-rec.est() and then executes ™
the complete abd! request. x/

ke-curr-pos = kc-curr-pos- > Si-next:
build-request():
dli-execute():

}

dli-éxecute()

This procedure accomplishes the following: */

" (1) Sends the request to MBDS using */
/* TI-S$TrafUnit() which is defined in the Test */
“* Interface. */

‘& *

’/v
(2) Calls dli-chk-requests-left() to ensure */
that all requests have been received. *

T1-S8TrafUnit(ke-curr-pos- >Si-template):
dli-chk-requests-left():

177

............
.....

. - St e . AL e S . AT e et L . ‘w
TP . T L P WP IR S S P T T PR N
- DT e et L. . R L A N T .. UL RETRIN e,

PRSI R R ST T B o Y i haEnnats P IV S IR S S I P e ; PP SN E U TP WA A

DA . P S A e A Sl S S P et A P st i on e e Y liviac it i Ym0 e AN o Ak b AC el B kB e e

........

if(i!'=0)
{
put just obtained value into hfi-curr-buff-val;
put hfi-curr-buff-val into Si-template;

skip over the asteriks we just filled with a value;

-* If the "or" flag is set TRUE by the KMS, then there are */
* places in the abdl-request where we should not move up *;
*the hierarchy to continue building the request. In =/

* other words, we need to continue using the same value. *;
if (kc-curr-pos->Si-or == TRUE)
{
if (firstime == TRUE)
{
firstime = FALSE:
or-ptr = par-ptr;
}
A:while (an ASTERIK or 'r’ has not been detected in Si-abdl-req)
{
fill Si-template with Si-abdl-req;
}
if (kc-curr-pos->Si-abdl-reqii’ == 'r’)
{
t =1
if (an "o’ followed by a ’ ’ is detected in Si-abdl-req)
par-ptr = or-ptr;
else

continue filling Si-template with Si-abdl-req;
goto A:
}
}

else
par-ptr = par-ptr->Si-parent:
}
else
par-ptr = par-ptr->Si-parent;
}

176

PR S ST
IR PR TR T A L S - PREETN AN e Te Tat Tl ey
o gttt e e S - - AR ' 3 . 2t .. «a'e

- e e > . e et ~ -

BAITRES e S A A A i I A S S AR AN 00 e AN AN

TTTTT g Y (el TN % T e T e T Y LT YT T

build-request()

This procedure accomplishes the following: */
Builds an abdl request in the Si-template */
pointed to by the ke-curr-pos. This procedure */
works from the back of the Si-abdl-req in */

building the request. */

int R
J-
k.
L,

z;
struct Sit-info *par-ptr,

: “or-ptr;

char c;
int firstime:

i = j = string length of(kc-curr-pos->Si-abdl-req);
par-ptr = kc-curr-pos-> Si-parent;

kc-curr-pos-> Si-template = NULL;

allocate enough space for kc-curr-pos-> Si-template;
firstime = TRUE;

* Working backwards in Si-abdl-req */
while (i >= 0)

fill Si-template with contents of Si-abdl-req 'til an **’ is hit;

.* If there is no value in the previous hfi-curr-buff-val,
then one must be fethced so that the request can be built */
if ((par-ptr->Si-result-file-> hfi-curr-buff-val == NULL) &&
(par-ptr !'= NULL))
{

z =1
/* Determine how large this value will be */
z=1-2;

using this value allocate space for it;

fetch a value from the result buffer:

put this value in hfi-curr-buff-val;

if c == ", then need to read to EOL so that file ptr
will be correct location when next value is fetched;

place a = " at end of template;

175

-~ - T A

. . BN . - EER A e B R N SN A TR N

s Tt e et e e T e et a e T ot T e e e e, I T Tt S B R N i S N SR T
WY PR S AP W WL WP N W i S ey . - 2 YOO W Y W) PN WSy SN W) A daleldadeteldelenldeletsloded

/* This case is where the EOR of the current request does not
match with the EOR of the previous query. */
case MATCHPART: :
build-request();
dli-execute();
if (results-are-not-returned)
retract-a-level();
break;

}
}
while ((kc-curr-pos->Si-EOR '= TRUE) && ('FAILURE))
{
do-next-retrieve();
if (resuits-are-not-returned)
retract-a-level():

}
if (FAILURE)
{
return(FAILURE);
}
/* If the loop pointer is set, then we need to perform
loop-handler(). */
if (kc-curr-pos-> Si-loop = NULL)
{

/* If the loop pointér is also the EOR, then all we do
is empty this buffer of its results */
if (ke-curr-pos-> Si-loop->Si-EOR == TRUE)
while (kc-curr-pos-> Si-result-file->hfi-buff-loc <=
kc-curr-pos- > Si-result-file- > hfi-count)
dli-kfs():
else
{
temp-ptr = kc-curr-pos- > Si-loop-~> Si-next:
while (temp-ptr '= NULL)
{
temp-ptr- > Si-resujt-file- - hfi-status = RETRACTTIME;
fclose(temp-ptr- - Si-result-file- > hfi-buff.fi-fid);
temp-ptr = temp-ptr- -~ Si-next:
!
loop-handler(kc-curr-pos- - Si-loop- - Si-next);
}
}

if (FAILURE)
return(FAILURE):
}

174

T rr——

W A e e IR AR SN A L S A SN AL M SIS i aC A M)

GU-proc()

/* This procedure accomplishes the following: ™

/* Establishes a current position in the DB */
/* by calling dli-execute(), do-next-retrieve(), */
/¥ and retract-a-level() so that the proper */

/™ results can be returned. When the resuits are *;
' returned. dli-kfs() is called so that they *’
may be displayed. */

RS

char “var-str-alloc();
struct Sit-info “temp-ptr:

- ™ If the ke-curr-pos is also the di-fst-sit-pos. then
we copy the Si-abdi-req over to Si-template (since
it is fully formed) and then call dli-execute(). */
if (kc-curr-pos == kc-ptr->di-fst-sit-pos- >Ssi-req-pos)
{
allocate enough space for Si-template;
strcpy {kc-curr-pos- > Si-template.kc-curr-pos- > Si-abdl-req);
dli-execute();
if (results-are-not-returned)
retract-a-level():

}

.= Else this is a subsequent DLI query. Hence, we need to know
where we are in the hierarchy of the DB. The MATCH procedure
will tell me this and I therefore use a flag it sets to base
my next actions. ¥,

else
{
switch (kc-ptr- >di-curr-sit-pos-> Ssi-status)
{
** This case is when the EOR of the last query is the
same as the EOR of the current query. *~
case MATCHALL:
* If there is only 1 value in the buffer. then
I need to get another value if there is one. *
if (kc-curr-pos- > Si-result-file- > hfi-buff-loc >
kc-curr-pos- > Si-result-file- > hfi-count)
retract-a-level():
else
dli-kfs():
break:
173
e e e A A T e
PO Y, TR N S Sy I S T R L e e sl

T P Y N W W W e TTW W (v e, W v -

.......................

AR PP e S-S _‘v..—‘._-‘-‘\'-v_ RO S MR N Y il s St ot Rt S it B e s i S i gl A Il Tl il

/* Else I just move the buffer file pointer to
the next value so that a new current position
in the DB is established. */

else

{

move file pointer;

}
break;

/* This case is where the EOR of the current request does not
match with the EOR of the previous query. *
case MATCHPART:
buiid-request();
dli-execute();
if (results-are-not-returned)
retract-a-level();
break;

}
}

/* Until I hit the EOR or there is a failure, keep processing the
abdl queries. */
while ((kc-curr-pos->Si-EOR != TRUE) && (!FAILURE))
{
do-next-retrieve();
if (results-are-not-returned)
retract-a-level();

}
if (FAILURE)

{
return(FAILURE);

}
}

172

,,,,,,

GHU-proc()

/* This procedure accomplishes the following: */
/* Establishes a current position in the DB *
/* by calling dli-execute(), do-next-retrieve(), *
/* and retract-a-level() so that the proper

/* results can be returned. * !

{
char *var-str-alloc():
int I

/* If the ke-curr-pos is also the di-fst-sit-pos, then
we copy the Si-abdl-req over to Si-template (since
7t is fully formed) and then call dli-execute(). */
if (ke-curr-pos == kc-ptr->di-fst-sit-pos- >Ssi-req-pos)
{
i = strlen(ke-curr-pos- >Si-abdl-req);
allocate enough space for Si-template;
strepy (kc-curr-pos- > Si-template.kc-curr-pos- > Si-abdi-req);
dli-execute():
if (results-are-not-returned)
retract-a-level():
}

/* Else this is a subsequent DLI query. Hence. we need to know
where we are in the hierarchy of the DB. The MATCH procedure
will tell me this and I therefore use a flag it sets to base
my next actions. */

else

{
switch (kc-ptr- >di-curr-sit-pos- > Ssi-status)
{
/> This case is when the EOR of the last query is the
same as the EOR of the current query. ™.
case MATCHALL:
* If there is only 1 value in the buffer. then
I need to get another value if there is one. *
if (kc-curr-pos- > Si-result-file-> hfi-count <= 1)
retract-a-level():

171

AL I G Al Jeadh Sandt Jenk Jate g and

dli-action()

/* This procedure accomplises the following: *.
/* Uses a case statement based on the *;
/* operation to determine the correct proc. to *-
/* call. *)

switch(kec-curr-pos-> Si-operation)
{
case GuOp:
case GnOp:
case GnpOp:
GU-proc();
break:

case GhuOp:

case GhnOp:

case GhnpOp:
GHU-proc();
break:

case IsrtOp:
GU-proc():
break:

case DletOp:
Delete-proc(kc-curr-pos):
printf("Dlet operation complete");
break:

case RepiOp:
GU-proc():
break:

case SpecRetOp:
Spec-ret-proc(kc-curr-pos):
printf("SpecRet operation complete");
break:

)
if (FAILURE)
printf("Operation could not be completed due to ERROR !!!");
'

170

N P T P P PR A U P S P G S S S T -
f e e e e e e e T s T T T T e s ST N e T At et e e T e Ve
ftatatat e b, WP g} L)) L) PUPNE W A Y

L Bndn Munas eeas oo s oo e

AR A S e A B b gt Jaun mae A) *."_."._m" - . P P g B A dhen LAIATR AT S DAl e it Ja S aam g AR GML N ' o e i At

B B L . - .

APPENDIX D - THE KC PROGRAM SPECIFICATIONS

dli-ke()

/™ This procedure accomplishes the following: */

(1) Checks Si-operation to determine whether *,

/= we are creating a DB or querying the DB. v
*

/ /

I /* (2) Depending on the si-operation the cor-

responding procedure is called.

-

= !

int c;

E initialize kc-curr-pos;
initialize kc-ptr;

switch (kc-curr-pos-> Si-operation)
' {
'. case CreateDB:
load-tables();
break:

case ExecRetReq:
requests-handler();

R
‘ break:
default:
- printf("Error ”mmv)’
o break;

e E Y Y N e
e,

requests-handler()

o This procedure accomplishes the following: *
: * Calls dli-action until all DLI queries are *

: processed. *

". while (ke-curr-pos '= NULL)

X {

< dli-action():

= get next Sit-info node to work on:

o set kc-curr-pos equal to this node:

" }

» }

169

l|v'rr'“7va' ——

/* walk down to the end of the status list -

status-ptr = first-status-node-ptr;
while (status-ptr.next <> "null’)
status-ptr = status-ptr + 1:

allocate a new status node:
status-ptr = head-kms-list-ptr:
append the status node to the status list;
* append the kms list to the end of the sit list */
sit-ptr.next = head-kms-list-ptr;
head-kms-list-ptr = "null’;
end-else:

end-else:

end-proc;

168

Crtat e,
AR MR P W)

et A at el at ah

P S
L A v et e

RS B NP X SP N

N

DI

L

‘* append the kms list to the end of the sit list *,
sit-ptr.next = head-kms-list-ptr;
head-kms-list-ptr = 'null’;

end-else;

end-proc;

L

s
T B

proc GET-NEXT-PARENT()
/* A GNP operation is used to access the database just below the *
/* current node the currency pointer is pointing to, rather than *°
/* having to specify the access path from the root as ina GU. *°

if (head-kms-list-ptr.cmd-code < > 'StarF’)
perform GET-NEXT():

end-if:

else
/* Once a valid GNP operation has been detected, we are sure the */
/* currency pointer is set to a segment (node) somewhere in the *
/* hierarchy with legitimate children beneath it. We then take the */
/* parent pointer of the first node of the kms list and set it to *,
/* the next to last node of the sit list. A status node is then *;
/* created and set to point to the first node of the kms list. *
/* Finally. the kms list is appended to the sit list. *

T

/* walk down to the end of the sit list */
sit-ptr = head-sit-list-ptr;
while (sit-ptr.next <> ’null’)

sit-ptr = sit-ptr + 1;

/¥ check to see if the head of the kms list is a valid child of the */
/* next to last node of the sit list */
if (head-kms-list-ptr.seg-name is not a valid child of the
next to last node in the sit list)
print ("Error - valid child not found");
end-if;
else
* since it is a valid child, set the parent pointer of the first */
"* node of the kms list to the next to last node of the sit list *,
head-kms-list-ptr.parent = sit-ptr.prev;

S A R AR
[P, P L WP WP W W Y

head-kms-list-ptr = ‘null’;
end-else;

end-else;
end-else:
end-else;

end-proc:

proc SPECIAL-RETRIEVE()
"* When a GN or GNP operation has been selected without any segment
/* search arguments specified, the normal GN or GNP operation of */
* returning the next segment occurrance is skipped. Instead we *J
/> consider this a special retrieve to return all segment occurrances */

* below the segment the currency pointer is pointing to. */

if (head-sit-list-ptr = 'null’)

print ("Error - status list null for SpecRetOp");
end-if;
else

/* walk down to the end of the status list */

status-ptr = first-status-node-ptr;

while (status-ptr.next <> ’null’)

status-ptr = status-ptr - 1;

allocate a new status node;
status-ptr = head-kms-list-ptr;
append status node to the status list;

/* walk down to the end of the sit list - the last node */
/* represents the current segment */
sit-ptr = head-sit-list-ptr;
while (sit-ptr.next <> 'null’)

sit-ptr = sit-ptr - I:
/* any nodes in the kms list with parent pointer = null
/* must have the parent pointer set to the current segment
kms-ptr = head-kms-list-ptr:
while (kms-ptr ==~ ‘null’)

if (kms-ptr.parent = "null’)

kms-ptr.parent = sit-ptr:

end-if:

kms-ptr = kms-ptr - 1, .
end-while:

*

£

166

~ - ~
. - e e e, e At et et . - - - ~ . LN . CEE - ~
et e T B L s P e T T St AT A S N RN
R, N AR TR T S WA B % T T P O G . ¥ WS S PP AP AP . V) - Ba S0 3 a2 o R d o o s B B A AL At an. ol g

allocate a new status node:
append the status node to the status list:
kms-ptr = head-kms-list-ptr;
prev-kms-ptr = kms-ptr;
prev-sit-ptr = sit-ptr;
done = ’false’;
while (not done)
/* now we walk down the kms and sit lists to see how
/* much overlap the sit list contains :
free (kms-ptr.result-file);
kms-ptr.result-file = sit-ptr.result-file:
kms-ptr = kms-ptr - 1;
sit-ptr = sit-ptr + 1;
if (kms-ptr = ’null’ OR sit-ptr = 'null’)
done = ’true’;
end-if;
else
/* both lists still contain nodes so increment them */
prev-sit-ptr = sit-ptr:
prev-kms-ptr = kms-ptr;
end-else:
end-while:

ES

if (kms-ptr = "null’)
/* case where sit list contained all of kms list */
status-ptr = prev-kms-ptr;
status-ptr.status = MATCHALL;
end-if:
else
/* case where sit list contained part of the kms list */
status-ptr = kms-ptr;
status-ptr.status = MATCHPART;
end-else;
/* now append kms list to the end of the sit list */
if (sit-ptr = ’null’)
prev-sit-ptr.next = head-kms-list-ptr:
end-if:
else
while (sit-ptr.next <> 'null’)
sit-ptr = sit-ptr + 1;
sit-ptr.next = head-kms-list-ptr:
end-else:

165

A AP S Rt S)
S, » _..,\:.).\ PR

LIPSV L T S S JRAL TT. DY St P)

>

i

/* walk down to the end of the status list ™
while (status-ptr.next <> ’'null’)
status-ptr = status-ptr - 1;
allocate a new status node;
status-ptr = head-kms-list;
status-ptr.status = MATCHPART;

append status node to the status list;

+* walk down to the end of the sit list */
sit-ptr = head-sit-list-ptr;
while (sit-ptr.next <> 'null’)

sit-ptr = sit-ptr + 1:

" append the kms list to the end of the sit list *,
sit-ptr.next = head-kms-list-ptr;
head-kms-list-ptr = "null’;

end-if:

else
/* check to see where first node in kms list overlaps sit list, *
/* i.e., if the node is a descendent of the current node *
found = ’'false’;

/* set pointer to the head of the sit list */
sit-ptr = head-sit-list-ptr:
while (sit-ptr <> ’null’ AND not found)
if (sit-ptr.seg-name = head-kms-list-ptr.seg-name)
found = TRUE;
end-if;
else
sit-ptr = sit-ptr + 1;
end-while:

if (! found)

print ("Error - match not found in GnOp");
end-if:
else

* found a valid overlap so set the parent pointer of the */
> first node of the kms list to the node above the node *,
* in the sit list that matched. *

head-kms-list-ptr.parent = sit-ptr.prev;

»

walk down to the end of the status list *
status-ptr = first-status-node-ptr;
while (status-ptr.next <> 'null")

status-ptr = status-ptr — 1l:

164

- ndiSba 2+ A ded Sy e - o 4 > -y o ——y T ' v "~ v — -~
EUE i B e d el fie=s Aty e oS el ® lind At e e ug fiain fire S St (it fulh St St Sttt 4 T v T T T T A

dli-check-requests-left()
~ /* This procedure accomplishes the following: *,
/* (1) Receives the message from MBDS by calling */
/* TI-R8Message() which is defined in the Test */
Interface. */
& */
(2) Gets the message type by calling *
/* TI-R8Type. ¥/

J* "y

/
(3) If not all the responses to the request */

have been returned, a loop is entered. Within */
,” this loop a case statement separates the */
/* responses received by message type.- */
/* */
/* (4) If the response contained no errors, */
/* then procedure TI-R8Req-res() is called to */
/* receive the response from MBDS. */
* * /
/* (5) If no results are returned, then */
;* the boolean results-are-not-returned is set */
:* to TRUE. */
o* *
;* (6) If the message contained an error, */
then procedure TI-R$ErrorMessage is called */
to get the error message and then procedure */

!

;* TI-ErrRes-output is called to output the */

/* error message. */
{
int msg-type,
err-msg,
done:
char *response;
struct ReqlD rid:
int rid;

results-are-not-returned = FALSE;
done = FALSE:

178

while ('done)
{
TI-R$Message();
msg-type = TI-R$Type();
. switch (msg-type)
. case CH-ReqRes:
- - done = TI-RSReg-res(&rid.response):
’ switch (kc-curr-pos-> Si-operation)
{
case GuOp:
case GnOp:
case GnpOp:
if (string length of(response) == 0)
results-are-not-returned = TRUE;
else
if (End of Request == TRUE)
{
file-results();
dli-kfs();

else
file-results():
break:

case GhuOp:
case GhnOp:
case GhnpOp:
if (string length of(response) == 0)
results-are-not-returned = TRUE,;
else

if (End of Request == TRUE)
{

file-results();

printf("operation completed");

}

else
file-results();
break:

case IsrtOp:
if (End of Request == TRUE)

printf("insert accomplished");

else
if (string length of(response) == 0)
resujts-are-not-returned = TRUE:
else

file-results();

179

IRCSeC i o S g Ji s Gou VISP B At At ke oA e el i B A S A A i ST —
break;
case DletOp:
if (string length of(response) == 0)
results-are-not-returned = TRUE;
else
file-results():
break:

case SpecRetOp:

if (string length of(response) == 0)
results-are-not-returned = TRUE;
else

file-results():

break;

case ReplOp:
s if (End of Request == TRUE)

printf("replace accomplished"):

else
n if (string length of(response) == 0)
P results-are-not-returned = TRUE;
t. else
file-results();
. break;

}
break:

case ReqgsWithErr:

/*Handle error conditions*/
break:
}/*end switch*/
}/*end while™ '
}/*end procedure*’

DO AL RPN A L AP S A AP Y AL L AN NI AT SR MU AL ML St e S S e gt i A e S T TR o B A AV At i Sl Sl Sl R

Delete-proc(x)
struct Sit-info *x;

/* This procedure accomplishes the following: */
/* (1) Is called by dli-action and deletes a */
/* node and all its children. */

"* (2) It works recursively by calling */

* delete-setup(). delete-setup can in turn */
call Delete-proc. Hence, mutual recur- */
sion. */

»

x

kc-curr-pos = x:
while (kc-curr-pos != NULL)
{
build-request():
dli-execute():
if (there is a child node)
{
kc-curr-pos = kc-curr-pos-> Si-child;
if (kc-curr-pos->Si-operation == GuOp)
{
build-request();
dli-execute();
if (results-are-not-returned)
break;
else
{
kc-curr-pos = ke-curr-pos-> Si-child;
delete-setup(kc-curr-pos);

}
}

else
Delete-proc(kc-curr-pos);
}

if (there is a sibling node)
{

kc-curr-pos = kc-curr-pos-> Si-sibling;

181

...........
......

e~ -'**1

PPy

if (kc-curr-pos->Si-operation == GuOp)
{
build-request():
dli-execute();
if (results-are-not-returned)
break:

else
[

)\
kc-curr-pos = kc-curr-pos-> Si-child:

delete-setup{kc-curr-pos);

}
!
L else
- Delete-proc(kc-curr-pos);
: }/*End of if*/
F ¥/*End of while*/
3 }/*End of procedure*’

182

TN~ e

delete-setup(x)
struct Sit-info *x;

’* This procedure accomplishes the following: */

/* (1) Sets up a base node from which we base */
I* our recursion. */

/* (2) Until we hit the end of its result-file */

* we keep calling Delete-proc so that all */

appropriate nodes are deleted. */

i

, x

{ .
int z:
int *buff-loc.
*buff-count;
struct hie-file-info *file-ptr:
char o

kc-curr-pos = x:

file-ptr = kc-curr-pos- > Si-parent- > Si-result-file;
buff-loc = (file-ptr->hfi-buff-loc);

buff-count = (file-ptr->hfi-count);

fid = file-ptr-> hfi-buff.fi-fid;

while (buff-loc <= buff-count)
{
Delete-proc(x);
skip over attribute name;
z =0
get the next value of the result file;
buff-loc = buff-loc ~ 1:
}
kc-curr-pos = ke-curr-pos- > Si-parent;
clean-up-buffer();

}

183

LA o i/ it e Saun aee i g ST~ i

CR NN

Ml e el

Spec-ret-proc(x)
struct Sit-info *x;

/* This procedure is called when it is necessary to */

/* process special retrieves, i.e.. those retrieves */
3

/* where we have to retrieve a node's children as */

/* well. Hence, this procedure is patterened after */
/* the Delete-proc procedure, i.e.. mutual recur- *,
/* sion. */
{

int done;

struct hie-file-info *file-ptr;

int buff-loc,

buff-count;

-

kc-curr-pos = x;

file-ptr = kc-curr-pos- > Si-result-file;
buff-loc = (file-ptr-> hfi-buff-loc);
buff-count = (file-ptr->hfi-count);
done = FALSE;

while (!done)
{ .
build-request();
dli-execute();
if (results-are-not-returned == FALSE)
if (there is a child node)
spec-ret-setup{kc-curr-pos- > Si-child);
if (there is a sibling node)
Spec-ret-proc(kc-curr-pos-> Si-sibling);
done = TRUE;
}
if (we are not at the end of the file)
{
close file;
open file;
buff-loc = 1:
while (buff-loc <= buff-count)
dli-kfs{):
}

}

184

DY LS N Y S S AR

A ARtk sl Seui Sealh S st S i Sadhreadl see o B E S A

" ‘:.4

~

MR TS S .

spec-ret-setup(x)
struct Sit-info *x:

/* This procedure is similar to delete-setup in that */

/* it establishes a base node from which our recur- */

/* sion is based. Values are fetched from the base */
/* node’s result file until an EOF is determined. *,

{

int buff-loc.
buff-count;

struct hie-file-info “file-ptr;

char c:

int z:

-

kc-curr-pos = x:

file-ptr = kc-curr-pos-> Si-parent-> Si-result-file;
buff-loc = (file-ptr-> hfi-buff-loc);

buff-count = (file-ptr->hfi-count);

while (buff-loc <= buff-count)

{
Spec-ret-proc(x};
skip over attribute name;

= getc(fid);-
get the next value from the result file
buff-loc = buff-loc + 1;
} .
kc-curr-pos = kc-curr-pos- > Si-parent;
clean-up-buffer():

}

185

HENE At s it Al

LA e

T T R TR ———— T I p—

retract-a-level()

/* This procedure accomplishes the following: */
/* Simulates retracting a level in the DB */

/* hierarchy. This is done by using values in */
/* the previous SIT buffer to build requests */
/* until we either receive some results or we */
/* do not in which case we retract again. The */
/* stopping condition for retracting is being */

’* at the BOR and its buffer is exhausted. */
{

int i;

char c

struct hie-file-info *curr-fptr,
‘ *prev-fptr;
int buff-loc;

curr-fptr = kec-curr-pos-> Si-result-file;

prev-fptr = kc-curr-pos-> Si-prev-> Si-result-file;
buff-loc = (prev-fptr-> hfi-buff-loc);

/* This is our stopping condition. */
if ({kc-curr-pos is BOR) and

(all elements in the result buffer have been used)
{

return(FAILURE = TRUE);
}

/* Else. we attempt to receive some results.
else

{

while (there are still results in the buffer to check)
{
pass over attribute name:
1= 0
c = get a character from result file:
load hfi-curr-buff-val with the attr value;
build-request():
dli-execute():
buff-loc = buff-loc ~ 1:
if (results-are-not-returned == FALSE)
{
return;
}
}

* ¢

186

0

S et it it Mt M S el P 8 Y

.........

. R R .
T v a ot e . e RN . B RN ﬂ O
28" 2" 8" 2 & & P aasan PRONP I g W W IPU AP G TR ST WY WY TP I Sel Rl Nl ik Wl ST

AP

el .'-“."?g:'.'-_.“;. c e
WDRERICAA L, WL NVER

if (we were unable to obtain any results)
{
kc-curr-pos = ke-curr-pos->Si-prev;
clean-up-buffer();
retract-a-level();

}
}
}

clean-up-buffer()

/* This procedure accomplishes the following: */
* (1) Sets hfi-status to RETRACTTIME. */
S * .
/
/* 12) Resets hfi-count to 0. */
{
struct hie-file-info *buff-ptr;
int *buff-count;
int *buff-loc;

buff-ptr = kc-curr-pos-> Si-result-file;
buff-count = (buff-ptr->hfi-count);
buff-loc = (buff-ptr-> hfi-buff-loc);

* Set status to RETRACTTIME so that current results are overwritten */
buff-ptr->hfi-status = RETRACTTIME;

/* Reset buff-count and buff-loc to 0 */
buff-count = 0;
buff-loc = 0:

buff-ptr->hfi-curr-buff-val = NULL;
close kc-curr-pos file buffer;

187

...
..

init-buffer()

/* This procedure accomplishes the following:
/* (1) Copies the user’s ID name into a temp

) * string. */

* */

/* (2) Converts the current dbi-buff-count to
/* a string. *

. X
/* (3) Increments the above count to reflect

,* the fact that the next time this procedure
/* is called it initialize a new buffer. *

/T /

/* (4) strcat above count to temp.

* Y

/ /

/* 15) strcat BUFF-FILE-SUFFIX to temp.
’ % x /

/

(6) strcpy temp over to hfi-buff.fi-fname.

char tempiFNLength + 1;
char countiFNLength + 1];

strcpy(temp,cuser-hie-ptr- > ui-li-type.li-dli.di-curr-db.cdi-dbname);

num-to-str{count.kc-ptr->di-buff-count);

* -
/

*
/
/

*/

*x /
!

kc-ptr- >di-buff-count = kec-ptr- >di-buff-count + 1;

strcat(temp.count);
strcat{temp,BUFF-FILE-SUFFIX):

strepy (kc-curr-pos- > Si-result-file- > hfi-buff.fi-fname,temp);

load-tables()

/* This procedure accomplishes the following:
/* (1) Calls dbl-template which is aiready
,* defined in the Test Interface. It loads the

/* template file. */

% *
,‘ /

;* (2) Calls dbl-dir-tbls() also defined in

* the Test Interface. It loads the descriptor
* files. +

{

struct rtemp-definition template;

*/

/

¥ /
/
* /
/

dbl-template(&template.kc-ptr-> di-ddl-files- > ddli-temp.fi-fid):
dbl-dir-tbls(kc-ptr- >di-ddl-files- > ddli-desc.fi-fid):

}

188

N R S U A S YL WP SRR S
PR AL S YL SO U T S0 T TRDY WP S0 Js S S IR

et
Py L

..........

acal

ARt

PR

.

~

C NN ent e e s snas e coo e g g ey

loop-handler(x)
struct Sit-info *x:
/* This procedure accomplishes the following: *,
/* (1) Determines if the hfi-count is 1 or less. */
/* If it is, then we need to get another value */
/* if there is one. */

% * /*
(2) Else we just empty the buffer of the *)
kc-curr-pos out. */

/

i+

;*

struct hie-file-info *file-ptr;

int *buff-loc,
: *buff-count;
char c;
" int z;

kc-curr-pos = x:

file-ptr = ke-curr-pos-> Si-prev-> Si-result-file;
buff-loc = (file-ptr->hfi-buff-loc):

buff-count = (file-ptr->hfi-count);

while (buff-loc <= buff-count)

{
loopit(ke-curr-pos);
skip over attribute name:
2 =0
get the next value from the result file;
buff-loc = buff-loc - 1;

}

kc-curr-pos = ke-curr-pos- > Si-prev:
clean-up-buffer():
}

189

loopit(x)

struct Sit-info *x;

{
kc-curr-pos = x:
build-request():
dli-execute():

if {results-are-not-returned)
return:
else
if ((kc-curr-pos->Si-next != NULL) &&
(kc-curr-pos-> Si-next->Si-BOR !'= TRUE))
{

kec-curr-pos-> Si-next-> Si-result-fite- > hfi-buff-loc = 1;

loop-handler(kc-curr-pos-> Si-next);
)
if (kc-curr-pos->Si-EOR == TRUE)

while (ke-curr-pos-> Si-result-file-> hﬁ-buff-locv <=

ke-curr-pos- > Si-result-file-> hfi-count)
dli-kfs();

put-in-buff(instr)
char *instr:

:* This procedure accomplishes the following: */
* Puts the incoming string form file-results */
into the correct file buffer. */

14

{

int 1:

for(i=0:instr:i !'= EMARK:i—~~+)

putc(instr{i .kc-curr-pos- > Si-result-file-> hfi-buff.fi-fid);

putc(’ .ke-curr-pos- >Si-result-file- > hfi-buff.fi-fid):

}

190

............................
.........................
.........

.....

Py

file-results()

X

This procedure accomplishes the following: */
(1) Opens a file to place the resuits in. */
;= *® 7

/
(2) Keeps track of how many results have

been received. *

¥ x
. /

B

E s

¥’.

i3

{3) Puts the results in their own line. */

{

char *response,
*first-attr,
*temp-str;
- int *num-values,
‘ *buff-loc,
curr-pos,
res-len:
struct hie-file-info *file-ptr;
* Next three statements are initialization */
initialize file-ptr:
initialize buff-loc;
initialize num-values;

/* If this is the first time then we open file for write status */
if (file-ptr->hfi-status == FIRSTTIME)
{
init-buffer();
open file for write mode:
set hfi-status to RESTTIME;
buff-loc = buff-loc ~ 1;

}

* If hfi-status is RETRACTTIME, then must overwrite stuff in
exiting file. Thus. file is opened for write status. *.
else
f (file-ptr- ~hfi-status == RETRACTTIME)
{
open file for write mode:
set hfi-status to RESTTIME:
buff-loc = buff-loc — 1:

}

191

K

—

Dl S 2 A

AD-A159 342

" UNCLASSIFIED

THE DESIGN AND IMPLEWENTATION OF A HIERARCHICAL
INTERFACE FOR THE MULTI-LINGUAL DRTBBHSE SYSTEM(U)
NRVRL POSTGRADUATE SCMOOL MONTEREY C

P BENSON ET AL. JUN F/G 9/2

T

o

PREEE R
F
N
N

=) EJIL

 v—
—
——
—

—
rr

r

o

v v
TN LT

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS - 1963 ~ A

LI S 7 S S o)

A2

¢ aamy

N g Fate

- - * - -
RO M A S AR Rt SR TP e AR SISO s WLy

-
A

A A A

.W. e iian) ."h.w:_—w Tene ’—- .—'.‘ﬁ rad ,—v" “'. v_.p., -.. n‘ DT S A et It S ot et A ets St i " n -, Lot v SR S Yl e i it Mg o ——"y

/* If above two conditions don’t hold, then just open file for
append status. */
else

open file for append status; -

}

response = kc-ptr->di-kfs-data.kfsi-hie.khi-response;
res-len = string length of(response);
curr-pos = 1:

* Read first attribute from response *;
read-dli-response(first-attr,curr-pos);

/* Put this attribute in buffer */
* put-in-buff(first-attr);

/* Read the value corresponding to this attribute */
read-dli-response(temp-str,curr-pos);

/* Put this value in the buffer */
put-in-buff(temp-str):

/* Increment the count of values */
num-values = num-values + 1;

* While we are not at the end of the response */
while (curr-pos < (res-len - 2))

read-dli-response(temp-str.curr-pos);

¥ If the attribute name just read in is not the same as the
first attribute name previously read in, then we put it and
its value on the same line in the buffer as the first attribute *
if (strcmp(first-attr,temp-str) != 0)
{
put-in-buff(temp-str);
read-dli-response(temp-str.curr-pos);
put-in-buff(temp-str);

}

192

R - . R I . - o

v, S e e, e et e " . .

o - . - LN B
»

. - e e e e e .

. . - . - "“'."\..'-"'. T Tty al et et .
LN e MR R . . oSS % TR YA T T R R S) AP RO T P L ST et
PRI VAR SIS AP PP S IO PN N AN AR AR AP PLD) %L‘A‘L&' N L e e A

A R e R T R T
a T . e %

AR T

/* If they are the same, then we need to start a new line in
the buffer. */

else

put-in-buff("0);
put-in-buff(temp-str);
read-dli-response(temp-str,&curr-pos);
put-in-buff(temp-str);
num-values = num-values + 1;
}
}

close file;
open file;

}

read-dli-response(outstr,pos)
char *outstr;

int *pos;

/* This procedure accomplishes the following: */
/* Reads the next value of the response buffer. */

int i;
char *response;

response = kc-ptr->di-kfs-data.kfsi-hie.khi-response:

load outstr with the contents of response until an End Marker

is detected;
put a ’ ’ in outstr;

}

193

P T AT e L T L T T

P dinte shis A S R B e Bt - Al Al Sou Jhoae e it e e i An e

APPENDIX E - THE KFS PROGRAM SPECIFICATIONS

dli-kfs()
/* This procedure accomplishes the following: */
/* Pulls a segment occurence from the proper */
/* buffer and displays it to the user. *
{

char c;

pull a value from kc-curr-pos file buffer;
print this value;

printf("0};

buff-loc = buff-loc + 1;

194

LU R T
K P N T P SRR PP GNP O
) ng.JC'J_J PRI -J‘Jﬁ.a.a_p.pa..z\ax.nf')$~'- RN IA LY RPN

..........................

........
P AR

- Py - n b s iy S B S0 S el Mt At Lo
PRLAT N A N AR SN IO R S AT ARl I it It i S i e LA RTUINE Aalb S

A. OVERVIEW
The DL/I language interface allows the user to input
transactions from either a file or the terminal. A

transaction may take the form of ei ther database

descriptions of a new database, or DL/I requests against an
existing database. Database descriptions may only be input
from a file, while DL/I requests may be input from either a
file or the terminal. The DL/I language interface is menu-
driven. When the transactions are read from either a file
or the terminal, they are stored in the interface. I+ the
transactions are database descriptions, they are executed

automatically by the system. If the transactions are DL/I

requests, the user is prompted by another menu to
selectively choose an individual DL/I request to be
processed. The menus provide an easy and efficient way to

allow the user to view and select the methods in which to
process DL/I transactions. Each menu is tied to its
predecessor, so that by exiting each menu the user is moved
up the "menu tree". This allows the user to perform

multiple tasks in a single session.

B. USING THE SYSTEM
There are two operations the user may perform. The user
may either define a new database or process requests against

an existing database. The first menu displayed prompts the

195

........
......

.......

T T T T o T e Iy oy

user for an operation to perform. This menu, hereafter ‘

referred to as MENUl, looks like the following:

.'.‘—E.’-'.f.'if.'.

Enter type of operation desired
(1) - load a new database

.Y

(p) — process old database
(x) - return to the operating system
). ACTION ——>

4 -

Upon selecting the desired operation, the user is

prompted to enter the name of the database to be used. When

loading a new database, the database name provided may not

presently exist in the database schema. Likewise, when

.

processing requests against an existing database, the

LR A g

T “:
- """ R oot
. A AR L

database name provided has to exist in the present database
schema. In either case, if an error occurs, the user is
told to rekey a different name. The session continues once
a valid name is entered. |

1f the "p" operation is selected from MENU1l, a second
menu is displayed that asks for the mode of input. This
- input may come from a data file or interactively +from the

terminal. This generic menu, MENU2, looks like the

following:

Enter mode of input desired
(f) - read in a group of transactions from a file
(t) - read in transactions from the terminal
(x) - return to the previous menu

> VT ‘.
. L ' .o .

ACTION ————> _

196

. P L A B . . et T et et P -t .« ot . B

L T S A T e Ce e e e e T T S R PR P Tae ST T,
o, - R R T T et T e RN - L P T R 4 REE . LIRS
DNl S S TR S PPN P P AP I P P P W A S R A A W W R W W A R A W SO R R

AR AR AL AL A IR AT R

eI s S

1f users wish to read transactions from a file, they are
prompted to provide the name of the file that contains those
transactions. 1f users wish to enter transactions directly
from the terminal, a message is displayed reminding them of

the correct format and special characters that are to be

0 RISTRIRARARES . R Rty
. -' g »' "l . 0 . LA .

used.

If the "1" operation is selected from MENU1l, a second
menu is displayed that is identical to MENU2 except that the
“tL option is omitted. Since the transaction 1list stores
both database descriptions and DL/1 requests, two different
access methods have to be employed to send the two types of
transactions to the KMS. Therefore, our discussion branches
to handle the two processes the user may encounter.

1. Processing Database Descriptions (DBDs)

When the user has specified the filename of DBDs,
further user intervention is not required. It does not make
sense to process only a single DBD out of a set of DBDs that
produce a new database, since they all have to be processed
at once and in a specific order. Therefore, the mode of
input is limited to files, and the transaction list of DBDs
is automatically executed by the system. Since all the DEDs
have to be sent at once to form a new database, control
should not return to MENU2Z where further transactions may be
input. Instead, control returns to MENU1 where the user may

select a new operation or a new database to process against.

197

- oLt — . . P T . . . NN - . e T
P T e . - Lt T e T et e T e e R N C Pe et P R O A B
o e e o~ B A D PR LT A "o

‘e .Q-.-. L - - - . . - -

D T N e N L I S P N T T Yo W AR NN TR o
L e [T SCRPYC I AL I . . i . T B O

L A N B P A I A T I A A I A A A S I AL A IR IO, R I Y TR T Y TR, F PRI LAY

A e T e T R AT R T T TN N R T W T T W e e e W et i B it e

2. Processing DL/l Reguests

In this case, after users have specified the mode of
input, they conduct an interactive session with the system.
First, all DL/1 requests are listed to the screen. As the
DL/1I requests are listed from the transaction list, a number
is assigned to each DL/I request in ascending order starting
with the number one. The number is printed on the screen
beside the first line of each DL/I request. Next, an access

meﬁu, called MENU3, is displayed which looks 1like the

following:

Fick the number or letter of the action desired

{num) - execute one of the preceding DL/I requests
(d) - redisplay the list of DL/I requests

(r) - reset the currency pointer to the root

(x) - return to the previous menu

ACTION ———=3 _

One selection from MENU3 needs further explanation. The "r*"
selection causes the currency pointer to be repositioned to
the root of the bhierarchical schema so that subsequent
requests may access the complete database. Examples of the
need to utilize this option are: before executing DL/I &uUs
or ISRTs.

Since the displayed DL/1 requests may exceed the
vertical height of the screen, only a full screen of DL/I
requests are displayed at one time. I+ the desired DL/I

request is not displayed on the current page, the user may

198

: B B R N R A IS, ST '-"&:‘ R R
PP P S S ST P P PR LS S LG S AR R R O IS A A S AR AL Al Sy S

ARl St M A S 3

........
.....

s

Y

e
S

N - - ><"‘
Tt L
e ae" ol

- -$-.l-. -,

Ladad

.....
.....

depress the RETURN key to display the next page of DL/I

requests. . If the user only desires to display a certain
number of lines, after the first page is displayed the user
may enter a number, and only that many lines of DL/I
requests are displayed. If users are only 1locking for
certain DL/I requests, once they have found them, they do
not have to ﬁage through the entire transaction list. By
depressing the "q" key, control is broken from listing DL/I
rehuests, and MENU3 is displayed. Under normal conditions,
when the end of the transaction list has been viewed, MENU3J
appears.

Since DL/I requests are independent items, the order
in which they are processed does not matter. The users have
the choice of executing however many DL/I requests they
desire. A loop causes the transaction list and MENU3S to be
redisplayed after each DL/I request has been executed so
that further choices may be made. Unlike processing DBDs,
control returns to MENUZ since the user may have more than
one file of DL/I requests against a particular database, or
the user may wish to input some extra DL/I requests directly
from the terminal. Once the user is finished processing on
this particular database, the user may exit back to MENU1 to

either change operations or exit to the operating system.

199

- T R LT e

ot ..__.:_.._.._‘ - L T R

e PRI AL AL P
S R e SRR Y .

- “ . L . Ve, .
PP RPN A SRE WL YA A T Ry W P uRl PP . a

- PR “ e
BAS N S AL I
AP I . SN VRO Y/ YR Sl PN U I T W Qi Ty Y W W G P §

ACOR A A Jin S ety S e S AnCE dae e A i adh R ad aa i e Mad iaad Al i on g et

.

. P T rpr——— ‘li“!

C. DATA FORMAT

When reading transactions from a file or the terminal,
there has to be some way of distinguishing when one
transaction ends and the next begins. Transactions are
allowed to span multiple lines, as evidenced by a typical
multi-level DL/I GU followed by a GN. This example also
shoﬁs that our definition of transaction incorporates one or
more requests. This allows a group of logically related
reﬁuests to be executed as a group. When a transaction
contains multiple requests, each request has to be separated
by an end-of-request flag. In our system this flag is the
“t" character. Since the system is reading the input 1line
by line, an end—-of-transaction flag is required. In our
system this flag is the "@" character. Likewise, the
system needs to know when the end of the input stream has
been reached. In our system the end-of-file flag 1is
represented by the "$" character. The following is an
example of an input stream with the necessary flags that are

required when multiple transactions are entered:

200

e L L L e N e e e e e e T T T T .}

LKA

TRANSACTION #1
@

TRANSACTION #2
REQUEST #1

1

RERQUEST #2

]

1

REQUEST #n

@

TRANSACTION #3
@

@
TRANSACTION #n
E J

D. RESULTS

When the results of the executed transactions are

sent

back to the user ‘s screen, they are displayed exactly the

same way individual DL/I1 requests are displayed (see Section

B.2). The following consolidates the user ‘s options:

+ +
1]

: KEY i FUNCTION

+——— ——t— - -+
; return ; Displays next screenful of output ;
; (number) ; Displays only (number) lines of output ;
; q ; Stops output, MENU1l is then redisplayed ;
O — — .

1@.

- .

LIST OF REFERENCES

Demur jian, S. A. and Hsiao, D. K., "New Directions in
Database-Systems Research and Development,” in the
Proceedings of the New Directions in Computing

Conference, Trondheim, Norway, August, 1985; also in

Technical Report, NPS5-52-85-881, Naval Postgraduate
School, Monterey, California, February 198S.

Baner jee, J., Hsiao, D. K., and Ng, F., "Database
Transformation, Query Translation and Performance
Analysis of a Database Computer in Supporting

Hierarchical Database Management," I1EEE Transactions on
Software Engineering, March 1980.

Weishar, D. J., The Design and Analysis of a Complete

Hierarchical Interface for a Multi-Backend Database

e N1 SEE N S _——— e == —_—CREm el ERR— S mmaesm— ==

System, M. 5. Thesis, Naval Postgraduate School ,

Monterey, California, June 1984.

Hsiao, D. K., and Harary, F., "A Formal System +for
Information Retrieval +from Files," Communications of
the ACM, Vol. 13, No. 2, February 1978, alsc 1in

Corrigenda, Vol 13., No. 4, April 1970.

Wong, E., and Chiang, T. C., "“Canonical Structure 1in
Attribute Based File Organization," Communications of

Rothnie, J. B. Jr., "Attribute Based File Organization
in a Paged Memory Environment,” Communications of the
ACM, Vol. 17, No. 2, February 1974.

The Ohio State University, Columbus, 0Ohio, Technical
Report No. 0SU-CISRC-TR-77-7, DBC Software Reguirements

PR RSN A R34 S 2 4

D. K. Hsiao, November 1977.

Naval Postgraduate School , Monterey, California,
Technical Report, NFS52-85-002, A Multi-BRackeng

and Hardware Gains, by S. A. Demurjian, D. K. Hsiaoc and

J. Menon, February 1985.

=== _—_——=m=nE —_—— s e - —_—me s = =

Form No. SHZ0-9026.

Boehm, B. W., Software Enginegering Economics,

Prentice—-Hall, 1981.

M)
)
N

Te T T e T T T T T TN NN W Y e W W e LR e e R e |

11. Naval Postgraduate School, Monterey, Califarnia,
Technical Report, NPS52-84-@12, Software Engineering
Jechnigues far Large-Scale Database Systems as Applied
to the Implementation of a Multi~Backend Database
System, by Ali Orooiji, Douglas Kerr and Daivid K.

Hsiao, August 1984.

12. The Ohio State University, Columbus, Ohio, Technical
Report No. OSU-CISRC-TR-82-1, The Implementation of a

Engineering Strategies and Effortsg Towards a Prototype
MDBS, by D. 8. Kerr et al, January 1982.

13. Kernighan, B. W., and Ritchie, D. M., The € Programming
Language, Frentice—Hall, 1978.

14. Howden, W. E., "Reliability of the Fath Analysis and
Testing Strategy,” IEEE Transactions on Software

Engineering, Vol. SE-2, September 1976.

15. Johnson, S. C., Yacc: Yet Another Compiler-Compiler,

Bell taboratories, Murray Hill, New Jersey, July 19783.

16. Lesk, M. E. and Schmidt, E., Lex — A Lexical Analyzer

Generator, Bell Laboratories, Murray Hill, New Jersey,

July 1978.

17. Date, C. J., An Introduction to Database Systems, 3d
ed., Addison Wesley, 1982.

18. Shienbrood, E., More — A File Fersual Filter for CRT
Viewing, Bell Laboratories, Murray Hill, New Jersey,
July 1978.

19. Kloepping, G. R., and Mack, J. F., The Design and
Implementation of a Relational Interface ifor the

Multi-Lingqual Database GSystem M. 5. Thesis, Naval

Fostgraduate School, Maonterey, California, June 198S.

.\'

“ST S ST I STV TN R e NG i UL N LI P S N S T j

DA T I .
v 2t e % . - - . . Tt
S i et Ul S S G NP LS WY P W S TR

20 NI
t ‘ N . .

1@.

INITIAL DISTRIBUTION LIST

Defense Technical Information Center

Cameron Station
Alexandria, Virginia 22304-61435

Library, Code 8142
Naval Postgraduate School
Monterey, California 93943-5100

Department Chairman, Code 52
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5100

Curriculum Officer, Code 37
Computer Technology

Naval Fostgraduate School
Monterey, California 93943-5100

frofessor David K. Hsiao, Code 52
Computer Science Department

Naval Postgraduate School
Monterey, California 93943-5100

Steven A. Demur jian, Code 52
Computer Science Department
Naval Postgraduate School
Monterey, California 93943-5100

Timothy P. Benson
F. O. Box 1974
Woodbridge, Virginia 22193

Gary L. Went:z
111 Appian Way
Pasadena, Maryland 21122

Gary R. Kloepping
Route 1, Box 99
Santa Rosa, Texas 78593

John F. Mack
2934 Emory Street
Columbus, Georgia 31903

No.

Copies

Al

M

8]

J® L5 '.«?

NN
'a %a

4
s Y

v,

LR 2 tali e bty VA Bl el S AR

LIPS NI A

DRI AT AP X
MJCRIALYS X ad e X A

e

R

11-85

R
™ e e ™

- St
PN W W T AN

